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ABSTRACT 

Modern cryptography places a great deal of emphasis on definitions, because a precise 

definition formalizes our intuition about a cryptographic primitive. 

This dissertation consists of two parts. The first part demonstrates the importance of 

definitional precision by examining a previously overlooked subtlety in defining a widely-

used primitive: the Collision Resistant Hash Function, or CRHF. The subtlety lies in the 

method by which the CRHF key is generated: namely, whether a trusted party needs to 

perform key generation (the "secret-coin" variant), or whether any public random string 

can be used as the key (the "public-coin" variant). Adding a new technique to the so-called 

"black-box separation" methodology, this thesis shows that these two variants of CRHF, 

which were sometimes used interchangeably, are actually distinct in general. However, they 

are also equivalent under certain conditions; the thesis identifies a precise and broad set of 

such conditions. 

The second part of this dissertation investigates two known definitions of entropy. Shan­

non has shown the equivalence of these two definitions by proving that the shortest compres­

sion length of a distribution is equivalent to the amount of randomness it contains. Cryp­

tographers are often interested in distributions that appear random to computationally-

bounded observers (for example, ciphertexts often have this property). In an attempt to 

quantify the amount of this computational randomness, analogues of Shannon's notions of 

compressibility and entropy have been proposed for the computationally-bounded setting. 

v 
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Whether these two notions remain equivalent is an interesting open question, with potential 

applications to pseudorandom generation and cryptographic primitives that rely on it. This 

thesis shows that they can differ vastly in a common cryptographic setting. One interesting 

corollary of our work is that we can extract more pseudorandom bits from a distribution if 

we choose the less commonly used notion of compressibility. In addition to presenting this 

result, the thesis studies how to better extract pseudorandomness from distributions that 

are computationally hard to compress. 

VI 
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Introduction 

Modern cryptography places a great deal of emphasis on definitions, because a precise def­

inition formalizes our intuition about a cryptographic primitive. This dissertation consists 

of two parts, both demonstrating that a careful choice between two similar definitions is 

important. 

Part One is based on the paper "Finding Collisions on a Public Road, or Do Secure 

Hash Functions Need Secret Coins?" that appeared in Crypto 2004, [28]. Part Two is based 

on the paper "Conditional Computational Entropy, or Toward Separating Pseudoentropy 

from Compressibility" that appeared in Eurocrypt 2007, [27]. 

Part I: Secret-Coin vs. Public-Coin 

Collision-resistant Hash Function, or CRHF, is one of the earliest primitives of modern 

cryptography, finding its first uses in digital signatures [45, 46] and Merkle trees [35, 36]. 

A hash function, of course, maps (potentially long) inputs to short outputs. Informally, a 

hash function is collision-resistant if it is infeasible to find two inputs that map to the same 

output. It was first formally defined by [10]. 

The first part of this dissertation demonstrates the importance of definitional precision 

by examining a previously overlooked subtlety in denning CRHF. The subtlety lies in the 

method by which the CRHF key is generated: namely, whether a trusted party needs to 

perform key generation (the "secret-coin" variant defined in [10]), or whether any public 

random string can be used as the key (the "public-coin" variant sometimes used in subse-
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quent work). Adding a new technique to the so-called black-box separation methodology, 

we show that these two variants of CRHF, which were sometimes used interchangeably, are 

actually distinct in general. This oversight has lead to problems, for example, in a proof 

from [21]. 

We also show that these two variants are equivalent under certain conditions. In Chap­

ter 4 we study such conditions precisely; here we just remark that there are known examples 

for both cases: a factoring-based construction shows the equivalence (see Chapter 4), while 

a lattice-based construction shows the distinction (see [44, 33]). 

Part II: Conditional Computational Entropy 

The second part of this dissertation investigates two known definitions of entropy. The 

most common definition, known as Shannon entropy and defined for a distribution X as 

Exex — log2 Pr[x], is a measure of how much randomness, in terms of number of bits, 

a distribution contains. Shannon has shown that this measure is equal to the shortest 

compression length (i.e., the shortest expected number of bits to which elements of X can 

be compressed) [54]. Thus there are two equivalent ways to define entropy. 

Both of the above mentioned entropy definitions are in the information-theoretical set­

ting, meaning no computation constraints are considered. Cryptographers, however, are of­

ten interested in distributions that "appear" random to computationally-bounded observers 

(for example, ciphertexts often have this property). In an attempt to quantify the amount 

of this "computational" randomness, analogues of Shannon's notions of compressibility and 

entropy have been proposed for the computationally-bounded setting: indistinguishability 

based [25] (so-called "HILL entropy") and incompressibility based [3] (so-called "Yao en­

tropy"). Whether these two notions remain equivalent is an interesting open question, with 

potential applications to pseudorandom generation and cryptographic primitives that rely 

on it. We show that they can differ vastly in a common cryptographic setting: namely, Yao 

^lack-box separation methodology was introduced by Impagliazzo and Rudich [32], and it is now a 
widely-used tool to show how complex a cryptographic primitive is compared to others. See section 5.1 for 
more details. 
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entropy can far exceed HILL entropy in a common cryptographic setting. 

An important application of the notion of computational entropy is to obtaining pseu­

dorandom bits from distributions. To this end, we need a tool called extractor. Extractors 

were first defined by Nisan and Zuckerman [42] to extract random bits from distributions 

with entropy, and it has been long known that they can be used to extract pseudorandom 

bits from distributions with HILL entropy. Barak et al. [3] showed that certain type of ex­

tractors can be used to extract pseudorandom bits from distributions with Yao entropy. We 

re-analyze a well-known extractor construction to show that it satisfies conditions required 

by the [3] result. In fact, this extractor extracts almost all the computational entropy. 

Applying this extractor to a distribution with higher Yao entropy (as described in previous 

paragraph), we show how to extract more pseudorandom bits than possible using the more 

commonly used HILL entropy. 
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Part I 

Secret-Coin vs. Public-Coin 



www.manaraa.com

Chapter 1 

Background 

Collision-resistant (CR) hashing is one of the earliest primitives of modern cryptography, 

finding its first uses in digital signatures [45, 46] and Merkle trees [35, 36]. A hash function, 

of course, maps (potentially long) inputs to short outputs. Informally, a hash function is 

collision-resistant if it is infeasible to find two inputs that map to the same output. 

In practice, such hash functions were constructed to have variable-length inputs mapped 

to fixed-length outputs. For example, Rabin's hash function [45] has the same output length 

as a block cipher; MD5 [51] has 128-bit outputs; and SHA-1 [41] has 160-bit outputs. 

However, it is easy to see there is no meaningful way to formalize the notion of collision-

resistance for a single fixed-output-length hash function. Indeed, at least half of the 2161 

possible 161-bit inputs to SHA-1 [41] have collisions (because SHA-1 has 160-bit outputs). 

Hence, an algorithm finding collisions for SHA-1 is quite simple: it just has, hardwired in 

it, two 161-bit strings that collide. 

Due to this simple observation, formal definitions of collision-resistant hashing (first 

given by Damgard [10]) usually speak of collision-resistant function families (CRHFs).1 A 

hash function family is collision-resistant if any adversary, given a function chosen randomly 

from the family, is unable to output a collision for it. 

JIt is possible to define a single hash function (with variable output-length; cf. previous paragraph) 
instead of a collection of them. In this case, it can be collision-resistant only against a uniform adversary. 
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How to Choose from a Family? Most definitions of CRHFs do not dwell on the issue 

of how a hash function is to be chosen from a family. In the first part of this thesis, we 

point out that this aspect of the definition is crucial. Indeed, in any application of collision-

resistant hashing, some party P must choose a function from the family by flipping some 

random coins to produce the function description. As we demonstrate, it is important to 

distinguish between two cases. In the public-coin case these random coins can be revealed 

as part of the function description. In the secret-coin case, on the other hand, knowledge 

of the random coins may allow one to find collisions, and thus P must keep the coins secret 

after the description is produced. (For examples of both cases, see Chapter 3.) We note 

that the original definition of [10] is secret-coin, and that the secret-coin definition is more 

general: clearly, a public-coin CRHF will also work if one chooses to keep the coins secret. 
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Chapter 2 

Motivation and Our Results 

2.1 Motivation 

Initial Observation The distinction between public-coin and secret-coin CRHFs is com­

monly overlooked. Some works modify the secret-coin definition of [10] to a public-coin 

definition, without explicitly mentioning the change (e.g., [4, 55]). Some definitions (e.g., 

[38]) are ambiguous on this point. This state of affairs leads to confusion and potential 

problems, as discussed in three examples below. 

Example 1. Some applications use the wrong definition of CRHF. For instance, in 

Zero-Knowledge Sets of Micali, Rabin and Kilian [37], the prover uses a hash function 

to commit to a set. The hash function is chosen via a shared random string, which is 

necessary because the prover cannot be trusted to choose his own hash function (since 

a dishonest prover could benefit from finding collisions), and interaction with the 

verifier is not allowed at the commit stage (indeed, the prover does not yet know who 

the verifier(s) will be). In such a setting, one cannot use secret-coin CRHFs (however, 

in an apparent oversight, [37] defines only secret-coin CRHFs). A clear distinction 

between public-coin and secret-coin CRHFs would make it easier to precisely state 

the assumptions needed in such protocols. 

Example 2. The result of Simon [55] seems to claim less than the proof implies. 

Namely, the [55] theorem that one-way permutations are unlikely to imply CRHFs is 
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stated only for public-coin CRHFs, because that is the definition [55] uses. It appears 

to hold also for secret-coin CRHFs, but this requires re-examining the proof. Such 

re-examination could be avoided had the definitional confusion been resolved. 

Example 3. The original result of Goldwasser and Kalai [21] on the security of 

the Fiat-Shamir transform without random oracles has a gap due to the different 

notions of CRHF (the gap was subsequently closed, see below). Essentially, the work 

first shows that if no secret-coin CRHFs exist, then the Fiat-Shamir transform can 

never work. It then proceeds to show, in a sophisticated argument, that if public-coin 

CRHFs exist, then it is possible to construct a secure identification scheme for which 

the Fiat-Shamir transform always results in an insecure signature scheme. This gap 

in the result would be more apparent with proper definitions. 

Let us elaborate on the third example, as it was the motivating example for our work. 

It is not obvious how to modify the [21] proof to cover the case when secret-coin CRHFs 

exist, but public-coin ones do not. Very recently, Goldwasser and Kalai [20] closed this gap 

by modifying the identification scheme of the second case to show that the Fiat-Shamir 

transform is insecure if secret-coin (rather than public-coin) CRHFs exist. Briefly, the 

modification is to let the honest prover choose the hash function during key generation 

(instead of the public-coin Fiat-Shamir verifier choosing it during the interaction, as in the 

earlier version). 

Despite the quick resolution of this particular gap, it and other examples above demon­

strate the importance of distinguishing between the two types of collision-resistant hashing. 

Of course, it is conceivable that the two types are equivalent, and the distinction between 

them is without a difference. We therefore set out to discover whether the distinction be­

tween public-coin and secret-coin hashing is real, i.e., whether it is possible that public-coin 

CRHFs do not exist, but secret-coin CRHFs do. 
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2.2 Our Results 

Recall that public-coin hashing trivially implies secret-coin hashing. We prove the following 

results: 

1. Dense1 secret-coin CRHFs imply public-coin CRHFs; but 

2. There is no black-box reduction from secret-coin CRHFs to public-coin CRHFs. 

The first result is quite simple. The second, which is more involved, is obtained by con­

structing oracles that separate secret-coin CRHFs from public-coin CRHFs. Our technique 

for this oracle separation is different from previous separations (such as [32, 55, 17, 18, 9]), 

as explained below. We note that our second result, as most oracle separations, applies 

only to uniform adversaries (a notable exception to this is [16]). 

Our results suggest that a gap between secret-coin and public-coin CRHFs exists, but 

only if no dense secret-coin CRHFs exist. They highlight the importance of distinguishing 

between the two definitions of CRHFs. 

In addition to these main results, Chapter 6 addresses secret vs. public coins in other 

cryptographic primitives. 

1A CRHF is dense if a noticeable subset of all keys of a particular length is secure; see Chapter 4. 
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Chapter 3 

Definitions and Notat ion 

Examples Before we define public-coin and secret-coin hashing formally, consider the 

following two example hash function families. The first one, keyed by a prime p with a 

large prime q\(p— 1), and two elements g,h €E Z* of order q, computes Hp^^(m) — gmihm2, 

where mi and m% are two halves of m (here we think of m as an element of Zq x Zq).
1 The 

second one, keyed by a product n of two primes p\ = 3 (mod 8), and P2 = 7 (mod 8) and 

a value r 6 Z*, computes Hn^r(m) — 4 m r 2 m mod n.2 

The first hash function family is secure as long as discrete logarithm is hard. Thus, if 

one publishes the random coins used to generate p, g and h, the hash function remain secure 

(as long as the generation algorithm doesn't do anything esoteric, such as computing h as 

a random power of g). On the other hand, the second hash function family is secure based 

on factoring, and is entirely insecure if the factors of n are known. Thus, publishing the 

random coins used to generate p\ and P2 renders the hash function insecure, and the coins 

must be kept secret.3 

We say that a function is negligible if it vanishes faster than any inverse polynomial. We 

let PPTM stand for a probabilistic polynomial-time Turing machine. We use M ? to denote 

'This family is derived from Pedersen commitments [43]. 
2This is essentially the construction of [10] based on the claw-free permutations of [23]. 
3It should be noted, of course, whether it is secure to publish the coins depends not only on the family, 

but also on the key generating algorithm itself: indeed, the first family can be made insecure if the coins 
are used to generate h as a power of g, rather than pick h directly. Likewise, the second family could be 
made secure if it were possible to generate n "directly," without revealing p\ and p2 (we are not aware of an 
algorithm to do so, however). 
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an oracle Turing machine, and MA to denote M instantiated with oracle A. 

Let k be the security parameter, and let I be a (length) function that does not expand 

or shrink its input more than a polynomial amount. Below we define two kinds of CRHFs: 

namely, secret-coin and public-coin. The secret-coin CRHFs definition is originally due to 

Damgard [10], and the definition here is adapted from [52]. 

Definition 1. A Secret-Coin Collision Resistant Hash Family is a collection of functions 

{hijiel for some index set I C {0,1}*, where hi : {0,1}I1I+1 —> {0, l} '1 ' , and 

1. There is a PPTM GEN, called the generating algorithm, so that GEN(lfe) G {0, l}^ f c ) D 

I. 

2. There exists a PPTM EVA, called the function evaluation algorithm, so that Mi € I 

and\fxe {0,1}W+1, EVA(i.x) = ^ ( x ) . 

3. For all PPTM ADV, the probability that ADV(z) outputs a pair (x, y) such that hi{x) = 

hi(y) is negligible in k, where the probability is taken over the random choices of GEN 

in generating i and the random choices of ADV. 

Definition 2. A Public-Coin Collision Resistant Hash Family is a collection of functions 

{MlG{o,i}*, where h% : {0,1}^+ 1 -» {0,1}I'I, and 

1. A PPTM GEN on input lk outputs a uniformly distributed string i of length l(k). 

2. There exists a PPTM EVA, called the function evaluation algorithm, so that Vz £ 

{0,1}* andVx€{0, l}*(M+ 1 , EVA(i,x) = h^x). 

3. For all PPTM ADV, the probability that ADV(i) outputs a pair (x, y) such that hi(x) = 

hi(y) is negligible in k, where the probability is taken over the random choices of GEN 

in generating i and the random choices of ADV. 

A pair (x, y) such that hi(x) = hi(y) is called a collision for hi. 
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Remarks The generating algorithm in the public-coin case is trivially satisfied. We keep it 

here for comparison with the secret-coin case. Note that in both cases, on security parameter 

k, GEN outputs a function that maps {0, l}^ fc)+1 to {0, \}^k\ This may seem restrictive as 

the hash functions only compress one bit. However, it is easy to see that hi can be extended 

to {0, l } n for any n, and remain collision-resistant with t{k)-h\t outputs, by the following 

construction: h*{x) = hi{... hi(hi(hi(xiox2o.. .oxe^+1)ox^k)+2)ox^k)+3). ..oxn), where 

Xj denotes the j - th bit of the input string x. 
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Chapter 4 

Dense Secret-Coin C R H F implies 
Public-Coin C R H F 

The notion of dense public-key cryptosystems was introduced by De Santis and Persiano in 

[11]. By "dense" they mean that a uniformly distributed string, with some noticeable prob­

ability, is a secure public key. We adapt the notion of denseness in public-key cryptosystems 

from [11] to the context of CRHFs. Informally, a d-dense secret-coin CRHF is a secret-coin 

CRHF with the following additional property: if we pick a k-bit string at random, then we 

have probability at least k~d of picking an index i for a collision-resistant function.1 Note 

that, for example, the factoring-based secret-coin CRHF from Chapter 3 is dense, because 

the proportion of fc-bit integers that are products of two equal-length primes is Q(k~2). 

More formally, by hi being collision-resistant, we mean with probability k~d, i is a 

"typical" output of GEN. We will use the notion of domination to define typical outputs. 

Below we cite the definition by Dedic et al. [12]. 

Definition 3 (^-Domination, [12]). Let B and C be distributions on the same set S, and 

g a real-valued function. We say that C g-dominates B i/VT C S, Prc[T] > g(PrB[T]). 

A nice feature about domination is that it preserves over distribution products. For­

mally, 

1 Confusingly, sometimes the term dense is used to denote a function family where each function has a 
dense domain, e.g., [24]. This is unrelated to our use of the term. 
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Lemma 1 ([12]). If C g-dommates B for a convex function g, then for any distribution D 

on a set S', D x C g-dominates D x B. 

With the notion of domination, we are now ready to define dense secret-coin collision-

resistant hash fanzine families. Throughout this chapter, let g be a convex polynomial. 

Definition 4. A secret-coin CRHF is d-dense if for all k there exists a set Sk in the range 

o/GEN(lfc) such that GEN(lfc)|5fc g-dominates U^\sk, where \s means the distribution is 

conditioned on set S. Furthermore, Pri_j/„fc.[i € Sk] > k~d, and Prĵ _GEN(ifc)[^ e Sk] > 

k~d for some integer d!. 

As mentioned in the beginning of the chapter, the factoring-based secret-coin CRHF 

from Chapter 3 is dense according to our definition. To see this, let S be the set of product 

of two equal-length primes. The weight of S in the range of GEN is close to one,2 and 

the weie ht of S in {0,1}W is &(£(k)-2). GEN(lfc)|Sfc ^-dominates Ue{k)\sk, where g is the 

identity function, because both of these conditional distributions are uniform. 

Constructing public-coin CRHF from dense secret-coin CRHF Given a d-dense 

secret-coin CRHF, if we pick fcd+1 strings of length £(k) at random, then with high proba­

bility, at least one of them defines a collision-resistant hash function. 

Hence, we can build a public-coin CRHF from such dense secret-coin CRHF as follows. 

1. Generate kd+l random ^(fc)-bit strings i\, i%, • •., i^d+i, independently. These strings 

specify kd+1 hash functions h^,hi2,.. .hi d+1 in the secret-coin CRHF (strictly speak­

ing, some strings may not define functions at all, because they are not produced by 

GEN; however, simply define hi(x) = 0e^ if EVA(i,x) does not produce an output of 

length k in the requisite number of steps). 

2. Through the construction described in the end of Chapter 3, extend the domain of 

each of these function to binary strings of length £(k)kd+1 + 1. Let the resulting 

func t ions b e h\, h,2, •••, hkd+i • 

GEN has to have real bad coins in order to fail to generate such a product. 
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3. On an input x of length £(k)kd+1 + 1, output the concatenation of h\(x), h,2(x), ..., 

hkd+i(x). Call this function h*. 

The resulting hash h* maps binary strings of length £(k)kd+1 + 1 to binary strings of length 

£(k)kd+1, and is collision-resistant because at least one of hi, hi, • • • > hkd+i is a "typical" 

output of GEN. 

The above discussion leads to the following theorem. 

Theorem 2. The existence of dense secret-coin CRHF implies the existence of public-coin 

CRHF. 

Proof. Assume for contradiction that the resulting public-coin hash family is not collision-

resistant. That is, there exists a PPTM adversary A who is able to find a collision for the 

public-coin hash family. Namely, 

P r [A outputs collision for h*] = e 
h* ,A's coins 

and e is not negligible. 

By definition of d-dense secret-coin CRHF, there exists a set S in the range of 

GEN with weight at least l/kd in { 0 , 1 } ' ^ , and GEN(lfe)|s ^-dominates U^k)\s- So 

the probability that none of the i hits S is (1 - l/kd)kd+l < e~k < 1/2*. Because 

Pr[A outputs collision for h*] is equal to Pr[A outputs collision for h* | 3i € £]-Pr[3i € S] 

+ Pr[A outputs collision for h* | jBi E S] • Pr[/Qi G 5], we have 

Pr[A outputs collision for h* | 3i € S] > e - l/2fc. 

Note that choosing an h* conditioned on the event that at least one of i is in 5" is 

equivalent to choosing kd+l random strings of length £(k) such that at least one of them 

is in S (let's call the uniform distribution on such strings D), and a random j G S, then 

replacing the first hi for which i G S by hj. Let the resulting hash function be h^\ to 

select h*-1', we choose random element from D and another one from U^k)\S. Even though 
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choosing h^1' in this manner instead of simply choosing h* may seem strange and inefficient, 

it makes the probability computation easier. We therefore have 

P r [A outputs collision for h{l)] > e - l/2fc , 
DxCxUe(k)\S 

where C is the distribution of coins needed by A. 

Now given a function key a, selected secretly from the dense secret-coin hash family (i.e., 

a <— GEN(lfc)), we use A to construct B that finds a collision for a as follows. Generate 

kd+l uniformly random keys i\,... ,ikd+i of length £(k) each. Output "FAIL" if none of 

these keys is in S; otherwise, replace the first i G S by a, then give all kd+l keys to A. 

If A succeeds in funding a collision, then it is a collision for all of the fcd+1keys, and, in 

particular, for a, so B also succeeds in finding a collision. We now need to analyze A's 

probability of success. 

Let the hash function that is given to A be h^2\ Note that the success or failure of B 

depend on a choice of kd+1 uniformly random strings, the coins of A (we denote them by 

C), and a generated by GEN. Since GEN(lfc)|5 ^-dominates U^k)\S, by Lemma 1 we have 

P r [B outputs collision for a] > 
t /^ f e | 1 xCxGEN(l '=) 

> P r [B outputs collision for a \ 3i € S] • P r [3i 6 S] 
l^fxCxGENd*) Uffi1 

> P r [A outputs collision for h{2)] • (1 - l/2fc) 
DxCxGEN(l f c ) 

> P r [A outputs collision for h{2) I a G S] • P r [a G S] • (1 - l/2fc) 
DxCxGEN(lfc) GEN(lfc) 

> P r [A outputs collision for h{2)] • l/kd' • (1 - l/2/c) 
DxCxGEN(lfe) |S 

> g ( P r \A outputs collision for h{2)] ) • \lkd' • (1 - l/2fc) 
- y\DxCxUew\S[ ^ Jy 

> < ? ( e - l / 2 f c ) - l / f c d ' - ( l - l / 2 f c ) , 

which is a contradiction because this probability is not negligible. One last issue is that B 

may not know where the first i G S is (to be replaced by a); in fact B may not even know 
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if there exists such an i. But B can simply try a at every location, and this will increase 

the running time by at most kd+l times. • 
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Chapter 5 

Separating Secret-Coin CRHF 
from Public-Coin CRHF 

5.1 On Oracle Separations 

Usually when one constructs a cryptographic primitive P (e.g., a pseudorandom genera­

tor [7]) out of another cryptographic primitive Q (e.g., a one-way permutation), P uses Q 

as a subroutine, oblivious to how Q implemented. The security proof for P usually con­

structs an adversary for Q using any adversary for P as a subroutine. This is known as a 

"black-box reduction from P to Q." 

Note that to show that no general reduction from P to Q exists requires proving that 

Q does not exist, which is impossible given the current state of knowledge. However, it is 

often possible to show that no black-box reduction from P to Q exists; this is important 

because most cryptographic reductions are black-box. 

The first such statement in cryptography is due to Impagliazzo and Rudich [32]. Specifi­

cally, they constructed an oracle relative to which key agreement does not exist, but one-way 

permutations do. This means that any construction of key agreement from one-way per­

mutations does not relativize (i.e., does not hold relative to an oracle). Hence no black-box 

reduction from key agreement to one-way permutations is possible, because black-box re­

ductions relativize. 

The result of [32] was followed by other results about "no black-box reduction from P 

to Q exists," for a variety of primitives P and Q (e.g., [55, 17, 18, 9]). Most of them, except 
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[18], actually proved the slightly stronger statement that no relativizing reduction from P 

to Q exists, by using the technique of constructing an oracle. 

Our proof differs from most others in that it directly proves that no black-box reduction 

exists, without proving that no relativizing reduction exists. We do so by constructing 

different oracles for the construction of P from Q and for the security reduction from 

adversary for P to adversary for Q. This proof technique seems more powerful than the 

one restricted to a single oracle, although it proves a slightly weaker result. The weaker 

result is still interesting, however, because it still rules out the most common method of 

cryptographic reduction. Moreover, the stronger proof technique may yield separations that 

have not been achievable before. 

We note that [18] also directly prove that no black-box reduction exists, without proving 

that no relativizing reduction exists. Our approach is different from [18], whose approach 

is to show that for every reduction, there is an oracle relative to which this reduction fails. 

For a detailed discussion on black-box reductions, see [48]. All reductions in this paper 

are what they refer to as fully black-box reductions. 

5.1.1 Black-Box Reductions 

Impagliazzo and Rudich [32] provided an informal definition of black-box reductions, and 

Gertner et al. [17] formalized it. We recall their formalization. 

Definition 5. A black-box reduction from primitive P to primitive Q consists of two oracle 

PPTMs M and AQ satisfying the following two conditions: 

If Q can be implemented, so can P: V7V (not necessarily PPTM) implementing Q, 

MN implements P; and 

If P is broken, so is Q: \/Ap (not necessarily PPTM) breaking MN (as an implementa­

tion of P), AQP' breaks N (as an implementation of Q). 

The first condition is only a functional requirement; i.e., the term "implement" says nothing 

about security, but merely says an algorithm satisfies the syntax of the primitive. 
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5.2 Separating Secret-Coin CRHF from Public-Coin CRHF 

5.2.1 The Main Result of Part I 

Theorem 3. There is no black-box reduction from public-coin CRHF to secret-coin CRHF. 

Proof. The following proposition is at the heart of our approach: it shows that it is sufficient 

to construct different oracles F and G, such that G is used in the implementations, while F 

and G are used for the adversaries. This is in contrast to the single-oracle approach usually 

taken to prove black-box separations. 

Proposition 1. To show that there is no black-box reduction from public-coin collision 

resistant hashing (P) to secret-coin collision resistant hashing (Q), it suffices to construct 

two oracles F and G such that, 

1. there is an oracle PPTM L such that N'' — LG implements secret-coin hashing; 

2. for all oracle PPTM M, if MG implements public-coin hashing, then there exists a 

probabilistic polynomial time adversary A such that Ap = A finds a collision for M , 

3. there is no oracle PPTM B such that J3F'G finds a collision for N. 

Proof. To show that there is no black-box reduction from public-coin collision resistant 

hashing (P) to secret-coin collision resistant hashing (Q), we need to negate the definition 

of black-box reduction from Section 2; i.e., we need to show that for every oracle PPTMs 

M and AQ, 

Q can be implemented: 3N that implements Q, and if MN implements P, then 

P can be broken, without breaking Q: 3Ap that breaks MN (as an implementation 

of P), while AQP' does not break N (as an implementation of Q). 

Recall that "implement" here has only functional meaning. 

The first condition clearly implies that Q can be implemented. The second condition 

also clearly implies that P can be broken: one simply observes that MN — ML , and L 
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is a PPTM; hence, writing MG is equivalent to writing M . The third condition implies 

that P can be broken without breaking Q, essentially because Q can never be broken. More 

precisely, the third condition is actually stronger than what we need: all we need is that 

for each AQ, there is Ap that breaks MN, while AQP' does not break N. Instead, we will 

show that a single Ap essentially works for all AQ: namely, Ap = AF, for a fixed oracle F 

and a polynomial-time A. Such Ap breaks MN; however, as condition 3 in the proposition 

statement implies, AQP' will be unable to break N, because AQP' = AQ ' = BF,G for 

some oracle PPTM B. D 

Remarks Note that if the implementation has access to not only G but also F, it becomes 

the usual single-oracle separation. The reason why we do not give the implementation access 

to F is to avoid "self-referencing" when denning F. To see this, note that F is the "collision 

finder" and is defined according to the oracles that the implementation has access to.1 

The rest of this section is devoted to constructing such F and G and proving that they 

work. 

5.2.2 The Oracles F and G 

In constructing F and G, we will use the Borel-Cantelli Lemma (see, e.g., [2]), which states 

that if the sum of the probabilities of a sequence of events converges, then the probability 

that infinitely many of these events happen is zero. Formally, 

Lemma 4 (Borel-Cantelli Lemma). Let B\,B2,-.- be a sequence of events on the same 

probability space. Then YJ™=\ P r[#n] < oo implies P r [ / \ ^ = 1 \Jn>k Bn] = 0. 

We first construct "random" F (collision-finder) and G (secret-coin hash), and then use 

the above lemma to show that at least one pair of F and G works. 

Intuitively, we want F to break any public-coin hashing but not break some secret-

coin hashing. More precisely, F will find a collision if it is supplied with the coins of the 

generating algorithm and will refuse to do so without the coins. 

'Similar concern occurs in [55], where constructing the collision-finder requires more careful design. 
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• G consists of two collections of functions {gj}igN and {/ia}ae{o,i}*' where each gi is a 

random function from {0, l} 1 to {0,1}2%. We will call a binary string valid if it is in 

the range of g, and invalid if not. Each ha is a random function from {0, l}l a '+ 1 to 

{0,1}IQI if a is valid, and is a constant function 0'a' if a is invalid. We will call queries 

to ha valid (resp. invalid) if a is valid (resp. invalid). 

• F takes a deterministic oracle machine M ? and l/ as input, and outputs a collision of 

length £ + 1 for MG if MG satisfies the following conditions. 

1. MG maps {0,1}£+1 to {0,1}'. 

2. MG never queries ha for some a not obtained by previously querying g. I.e., 

whenever MG queries hQ, this a is the answer to some g-query that MG has 

previously asked. 

When both conditions hold, F picks a random x from {0,1} '+ 1 that has a collision, 

then a random y (^ x) that collides to x (i.e., MG(x) = MG(y)), and outputs (x,y). 

Otherwise F outputs ±. 

Observe that when F outputs (x,y), not only x, but also y is uniformly distributed 

over all points that have a collision. Indeed, let C be the total number of points that 

have a collision, and suppose y has c collisions (x\,X2, • • •, xc): then Pr[y is chosen] = 

E i= i l /cPr[xj is chosen] = 1/c • (c/C) = 1/C. 

Remarks The reason for g being length-doubling is to have a "sparse" function family. 

More specifically, it should be hard to get a value in the range of g without applying it. 

As in [55], there are various ways of constructing F (the collision-finding oracle): one 

can choose a random pair that collides, or a random x then a random y (possibly equal to 

x) that collides to x. The second construction has the advantage, in analysis, that both x 

and y are uniformly distributed but does not always give a "correct" collision, like the first 

one does. Our F has both properties. 
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5.2.3 Secret-Coin Coll is ion-Resistant Hash Family Based on G 

In this section we construct a secret-coin CRHF. The construction is straightforward given 

the oracle G: the generating algorithm uses g and the hashing uses h. More precisely, on 

input lk the generating algorithm picks a random seed r € {0, l}fc and outputs a = <?fc(r). 

The hash function is ha. Note that the adversary A (who is trying to find a collision) is 

given only a but not r. We will show that for measure one of oracles F and G, the probability 

over r and A's coin tosses that A finds a collision for ha is negligible. Recall that A has 

access to both F and G. 

Define D as the event that A outputs a collision for ha in the following experiment: 

r <-fl {0, l} fc, a +- gk(r), (x,y) <- AF>G(a). 

And in the same experiment, define B as the event that during its computation, A queries 

F on M', where M • is some deterministic oracle machine that queries its oracle on a 

preimage of a under g^ (i.e., intuitively, M' has r hardwired in it). Suppose A's running 

time is bounded by kc for some constant c. The probability that B happens is at most 

the probability of inverting the random function g^. If a has a unique preimage, this is at 

most kc/2k; the probability that a has two or more preimages is at most l/2fc (because it's 

the probability that r collides with another value under <?&); hence Pr[5] < (kc + l)/2fc. 

The probability that D happens conditioned on -<B is at most the probability of finding 

a collision for random function ha, which is bounded by k2c/22k. Recall that A can be 

randomized. We thus have 

P r [D] = Pr[B]-Pr[L>|B] + Pr[-iB]-Pr[Z>|-.5] 
F,C,r,A 

< PT[B] + PT[D\-^B] 

< (kc + l)/2k + k2c/22k 

< 2kc/2k. 

By the Markov inequality, Prf^[PrrtA[D] > k2 • 2kc/2k] < 1/k2. Since J2k V*2 c o n " 
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verges, the Borel-Cantelli lemma implies that for only measure zero of F and G, can there be 

infinitely many k for which event D happens with probability (over r and A's coins) greater 

than or equal to fcc+2/2fc_1. This implies that for measure one of F and G, event D happens 

with probability (over r and A's coins) smaller than hc+2/2k~l (a negligible function) for 

all large enough k. There are only countably many adversaries A, so we have the following 

lemma. 

Lemma 5. For measure one of F and G, there is a CRHF using G, which is secure against 

adversaries using G and F. 

5.2.4 No Public-Coin Collision-Resistant Hash Family Based on G 

In this section we show that any implementation of public-coin hashing using oracle G 

cannot be collision-resistant against adversaries with oracle access to both F and G.2 More 

precisely, let r G {0, l}^fe) be the public randomness used by the generating algorithm for 

a family of hash functions, and let M ? be the evaluation algorithm. I.e., MG(r,-) is the 

hash function specified by r. Assume that Mf(-) = MG(r, •) maps {0, 1}<W+1 to {0, l}^k\ 

where £ is a function that does not expand or shrink the input by more than a polynomial 

amount. We will show how to find x and y of length £(k) + 1 such that MG(x) = MG(y). 

An immediate attempt is to query F(Mj, li(-k^), but notice that MG may query ha for 

arbitrary a,3 which prevents F from finding a collision for us. However, these a are likely 

to be invalid, and hence oracle answers to these queries are likely to be 0'Q'. So we can 

construct a machine Mr that behaves "similar" to Mr but only after getting a from g does 

it query ha. And instead of finding collision for MG, we find collision for MG, which can 

be done by simply querying F(Mj, l^fc^)., 

Suppose the running time of Mf is bounded by kc for some constant c > 1. Before 

simulating MG, MG queries g on all inputs of length smaller than or equal to 4c log k. This 

takes 2fc4c steps. Now MG simulates MG step by step, except for queries to ha. If a is 

the answer to one of the queries Mf already asked of G (either before the beginning of the 

In fact, only F is needed to And a collision. 
3In particular, those a not obtained by previously querying g. 
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simulation or when simulating MG), then MG actually queries ha. Else it returns 0'a' as 

the answer to MG without querying ha. 

Now fix r and x. For every M ? the probability, over random G, that Mr
G(i) ^ Mr

G(x) 

is at most the probability, over G, that MG queries ha for some valid a of length greater 

than 8c log k without receiving it from g.A Consider the very first time that MG makes such 

a "long" valid query. Let ng be the number of queries to g on inputs longer than 4clogfc, 

and rih, be the number of invalid queries to h prior to this point. Then the probability in 

question is upper bounded by kc • —ks?ln
 nh» which is at most l/k3c. For every fixed G and 

r, call an x "bad" if AfG(x) ^ Mr
G(x). We have 

E[Pr[x is bad]] = Pr[x is bad] < l/k3c. 
G x G,x 

Next, notice that there are at most half of x that have no collisions, and F would pick 

its answer (x^, yp), uniformly, from those points that have a collision. So for a fixed G, the 

probability over F that Xf is bad is at most twice the probability over random x € {0, l}^ fc)+1 

that x is bad. Also recall that the distribution of yj= is the same as xp. So for every M ' , 

EfPrfat least one of (xp.yp) is bad]] < 4 • EfPrfx is bad]]. 
G F G

 x 

If none of (xp,yp) is bad, this pair would be a collision not only for MG but also for MG . 

We have 

P r [(xf, t/F) is not a collision of MG] < 4 P r [x is bad] < 4//c3c, 
F,G,r G,x,r 

then 

Pr[Pr[{xF,yF) is not a collision of MG] > A/kc) < l/k2c. 
F,G r 

Since Ylk V^ 2 c converges, the Borel-Cantelli lemma implies that for only measure zero 

of F and G, can we have Prr[(xp,yF) is not a collision of MG] > A/kc for infinitely many k. 

In other words, for measure one of F and G, Pr r[(xp, J/F) is a collision of MG] > A/kc for all 

Recall that g is length-doubling. 



www.manaraa.com

26 

large enough k. There are only countably many oracle machines M ' , each of which can be 

collision resistant for only measure zero of F and G. We conclude the following. 

Lemma 6. For measure one of F and G, any implementation of public-coin hash function 

families using G cannot be collision-resistant against adversaries using F. 

This concludes the proof of Theorem 3. • 
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Chapter 6 

Other Primitives 

Public Coins vs. Secret Coins For Other Primitives Perhaps the lack of attention 

in the literature to the distinction between secret- and public-coin primitives is due, in part, 

to the fact that this distinction is often not meaningful. 

For example, for one-way function families, these two notions are equivalent, because 

a secret-coin one-way function family implies a single one-way function (which trivially 

implies a public-coin one-way function family). Indeed, take the generating algorithm g 

and evaluation algorithm / and define F(r,x) = {g(r), fg(r){
x))\ this is one-way because an 

adversary who can come up with (r',x') such that g(r) = g{r') and fg(r')(x') = fg(r){
x) can 

be directly used to invert fg(r){x), since fg(r){x') — fg(r')(
x>) — fg(r)ix)-

On the other hand, for trapdoor permutations (and public-key schemes), the notion of 

public-coin generation is meaningless: indeed the trapdoor (or the secret key) must be kept 

secret. 

However, it seems that this distinction is interesting for some primitives in addition 

to collision-resistant hash functions. The relationships between public-coin and secret-coin 

versions of one-way permutation families and claw-free permutation families are unknown.1 

In particular, claw-free permutations are related to collision-resistant hashing [10, 52], which 

suggests that the distinction for claw-free permutations is related to the distinction for 

CRHFs. 

1We believe that the same construction of F and G (up to slight modifications) separates public-coin and 
secret-coin one-way permutation families. 
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Entropy 
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Chapter 7 

Background 

The various information-theoretic definitions of entropy measure the amount of random­

ness a probability distribution has. As cryptography is able to produce distributions that 

appear, for computationally bounded observers, to have more randomness than they really 

do, various notions of computational entropy attempt to quantify this appearance of en­

tropy. The commonly used HILL entropy (so named after [25]) says that a distribution has 

computational entropy k if it is indistinguishable (in polynomial time) from a distribution 

that has information-theoretic entropy k.1 The so-called Yao entropy [61, 3], says that a 

distribution has computational entropy k if it cannot be efficiently compressed to below k 

bits and then efficiently decompressed. Other computational notions of entropy have been 

considered as well [3, 25]. 

Computational notions of entropy are useful, in particular, for extracting strings that are 

pseudorandom (i.e., look uniform to computationally bounded observers) from distributions 

that appear to have entropy. Indeed, generation of pseudorandom bits is the very purpose 

of computational entropy defined in [25], and its variant considered in [15]. Pseudorandom 

bits have many uses, for example, as keys in cryptographic applications. 

The specific notion of information-theoretic entropy depends.on the desired application; for the purposes 
of this paper, we will use min-entropy, defined in Chapter 9. 
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Our Results 

The adversary in cryptographic applications (or, more generally, an observer) often possesses 

information related to the distribution whose entropy is being measured. For example, in the 

case of Diffie-Hellman key agreement [13] the adversary has gx and gy, and the interesting 

question is the amount of computational entropy of gxy. Thus, the entropy of a distribution 

for a particular observer (and thus the pseudorandomness of the extracted strings) depends 

on what other information the observer possesses. Because notions of computational entropy 

necessarily refer to computationally-bounded machines (e.g., the distinguisher for the HILL 

entropy or the compressor and decompressor for the Yao entropy), they must also consider 

the information available to these machines. This has sometimes been done implicitly (e.g., 

in [15]); however, most commonly used definitions do not do so explicitly. 

In this work, we explicitly put forward notions of conditional computational entropy. 

This allows us to: 

1. Separate conditional Yao entropy from conditional HILL entropy by demonstrating 

a joint distribution (X, Z) such that X has high Yao entropy but low HILL entropy 

when conditioned on Z. 

2. Demonstrate (to the best of our knowledge, first) application of Yao entropy by ex­

tracting more pseudorandom bits from a distribution using Yao-entropy-based tech­

niques than seems possible from HILL-entropy-based techniques. 
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3. Define a new, natural notion of unpredictability entropy, which can be used, in par­

ticular, to talk about the entropy of a value that is unique, such as gxy where gx and 

gy are known to the observer, and possibly even verifiable, such as the preimage x of 

a one-way permutation / , where y = f(x) is known to the observer. 

HILL-Yao Separation. The first contribution (Section 10.1) can be seen as making 

progress toward the open question of whether Yao entropy implies HILL entropy, attributed 

in [59] to Impagliazzo [31] (the converse is known to be true: HILL entropy implies Yao 

entropy, because compressibility implies distinguishability). Wee [60] showed that Yao 

entropy does not imply HILL entropy in the presence of a random oracle and a membership 

testing oracle. Our separation of conditional Yao entropy from conditional HILL entropy 

can be seen as an improvement of the result of [60]: it shows that Yao entropy does not 

imply HILL entropy in the presence of a (short) random string, because the distribution 

Z on which X is conditioned is simply the uniform distribution on strings of polynomial 

length. The separation holds under the quadratic residuosity assumption. 

Randomness Extraction. Usually, pseudorandomness extraction is analyzed via HILL 

entropy, because distributions with HILL entropy are indistinguishable from distributions 

with the same statistical entropy, and we have tools (namely, randomness extractors [42]) to 

obtain uniform strings from the latter. Tools are also available to extract from Yao entropy: 

namely, extractors with a special reconstruction property [3]. Our second contribution 

(Section 11.3) is to show that considering the Yao entropy and applying a reconstructive 

extractor can yield many more pseudorandom bits than the traditional analysis, because, 

according to our first result, Yao entropy can be much higher than HILL entropy. This 

appears to be the first application of Yao entropy, and also demonstrates the special power 

of reconstructive extractors. 

It is worth mentioning that while our separation of entropies is conditional, the ex­

traction result holds even for the traditional (unconditional) notion of pseudorandomness. 
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The analysis of pseudorandomness of the resulting string, however, relies on the notion of 

conditional entropy, thus demonstrating that it can be a useful tool even in the analysis of 

pseudorandomness of unconditional distributions. 

Unpredictability Entropy. Unpredictability entropy is a natural formalization of a pre­

viously nameless notion that was implicitly used in multiple works. Our definition essentially 

says that if some value cannot be predicted from other information with probability higher 

than 2~k, then it has entropy k when conditioned on that information. For example, when a 

one-way permutation / is hard to invert with probability higher than 2_fc, then conditioned 

on f(x), the value x has entropy k. The use of conditional entropy is what makes this 

definition meaningful for cryptographic applications. 

We demonstrate that almost k pseudorandom bits can be extracted from distributions 

with unpredictability entropy k, by showing that unpredictability entropy implies condi­

tional Yao entropy, to which reconstruction extractors can be applied. Thus, unpredictabil­

ity entropy provides a simple language that allows, in particular, known results on hardcore 

bits of one-way functions to be stated more generally. 

We also prove other (fairly straightforward) relations between unpredictability entropy 

and HILL and Yao conditional entropies. 
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Definitions and Notat ion 

In this section we recall the HILL and Yao definitions of computational entropy (or pseu-

doentropy) and provide the new, conditional definitions. 

Notation. We will use n for the length parameter; our distributions will be on strings of 

length polynomial in n. We will use s as the circuit size parameter (or running time bound 

when dealing with Turing machines instead of circuits). To denote a value x sampled from 

a distribution X, we write x <— X. We denote by M{X) the probability distribution on 

the outputs of a Turing machine M, taken over the coin tosses (if any) of M and the 

random choice of the input x according to the distribution X. We use Un to denote the 

uniform distribution on {0,1}". For a joint distribution (X, Z), we write Xz to denote the 

conditional distribution of X when Z = z\ conversely, given a collection of distributions Xz 

and a distribution Z, we use {X, Z) to denote the joint distribution given by Pr[(X, Z) = 

{x, z)] = Pr[Z = z] P r p G = x\. 

We may describe more complicated distributions by describing the sampling process 

and then the sampled outcome. For example, {a <— X;b <— X : (a, b)} denotes two inde­

pendent samples from X, while {a <— X : (a,M(a,Y))} denotes the distribution obtained 

by sampling X to get a, sampling Y to get b, running M(a, b) to get c, and outputting 

(o,c). 

The statistical distance between two distributions X and V, denoted by d i s t (X, Y), 

is defined as maxT | Pr[T(X) = 1] - Pr[T(Y) = 1]| where T is any test (function). (This 
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is equivalent to the commonly seen d i s t (X, Y) = ^ ^ a |P r [X = a] — Pr[Y = a]\.) The 

computational distance with respect to size s circuits, denoted by cd is t s (X, Y), limits T 

to be any circuit of size s. 

Unconditional Computational Entropy. The min-entropy of a distribution X, de­

noted by Hoo(-^O) is denned as — log(maxx Pr[X = xj). Although min-entropy provides 

a rather pessimistic view of a distribution (looking only at its worst-case element), this 

notion is useful in cryptography, because even a computationally unbounded predictor can 

guess the value of a sample from X with probability at most 2~iio°(x\ Most results on 

randomness extractors are formulated in terms of min-entropy of the source distribution. 

The first definition says that a distribution has high computational min-entropy if it 

is indistinguishable from some distribution with high statistical min-entropy. It can thus 

be seen as generalization of the notion of pseudorandomness of [61], which is defined as 

indistinguishability from uniform. 

Definition 6 ([25, 3]). A distribution X has HILL entropy at least k, denoted by 

H^!jLL(X) > k, if there exists a distribution Y such that Hoo(^) > k and cd is t s (X, Y) < e. 

(In [25] Y needs to be efficiently samplable; however, for our application, as well as for [3], 

samplability is not required.) 

Another definition of computational entropy considers compression length. Shannon's 

theorem [54] says that the minimum compression length of a distribution, by all possi­

ble compression and decompression functions, is equal to its average entropy (up to small 

additive terms). Yao [61] proposed to measure computational entropy by imposing compu­

tational constraints on the compression and decompression algorithms.1 In order to convert 

this into a worst-case (rather than average-case) metric similar to min-entropy, Barak et 

al. [3] require that any subset in the support of X (instead of only the entire X) be hard 

to compress. 

1Yao called it "effective" entropy. 
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Definition 7 ([61, 3]). A distribution X has Yao entropy at least k, denoted by Jl£*°(X) > 

k, if for every pair of circuits c,d (called "compressor" and "decompressor") of total size s 

with the outputs of c having length £, 

P r [d{c(x)) = x] < 2e'k + e. 

Note that just like HILL entropy, for e = 0 this becomes equivalent to min-entropy (this 

can be seen by considering the singleton set of the most likely element). 

Conditional Computational Entropy. Before we provide the new conditional defini­

tions of computational entropy, we need to consider the information-theoretic notion of 

conditional min-entropy. 

Let (Y, Z) be a distribution. If we take the straightforward average of the min-entropies 

Ez<-z[HooC^)] to be the conditional min-entropy, we will lose the relation between min-

entropy and prediction probability, which is important for many applications (see e.g. 

Lemma 11 and Lemma 16). For instance, if for half of Z, Hoo(^z) = 0 and the other 

half Hoo(^z) = 100, then, given a random z, Y can be predicted with probability over 1/2, 

much more than 2"5 0 the average would suggest. A conservative approach, taken in [50], 

would be to take the minimum (over z) of HooC^z)- 2 However, this definition may kill 

"good" distributions like Yz = Un for all z + 0" and Yz = 0n for 2 = 0"; although this 

problem can be overcome by defining a so-called "smooth" version [50, 49], we follow a 

different approach. 

For the purposes of randomness extraction, Dodis et al. [14] observed that because Z is 

not under adversarial control, it suffices that the average, over Z, of the maximum proba­

bility is low. They define average min-entropy: H.oo(Y\Z) = — log(E2^z[2_ H o o^y ' 'z = 2 ;^ = 

— log(E2<-z[m&Xy Pr[Yj = y]]). This definition averages prediction probabilities before 

taking the logarithm and ensures that for any predictor P, ~PY(y^)^{Y,Z)[P{z) = 2/] < 

2-HooCn-Z) jj. gjgQ e n s u r e s that randomness extraction works almost as well as it does for 

unconditional distributions; see Section 11.1. 
2For some applications, e.g. [15, 26], this rather stringent condition can-be met. 
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Using this definition of conditional min-entropy, defining conditional HILL-entropy is 

straightforward. 

Definition 8 (Conditional HILL entropy). For a distribution (X,Z), we say X has HILL 

entropy at least k conditioned on Z, denoted by H.^l{X\Z) > k, if there exists a collection 

of distributions Yz (giving rise to a joint distribution (Y,Z)) such that 'H.tX)(Y\Z) > k and 

cdists((X,Z),(Y,Z))<e. 

For conditional Yao entropy, we simply let the compressor and decompressor have z as 

input. 

Definition 9 (Conditional Yao entropy). For a distribution (X, Z), we say X has Yao 

entropy at least k conditioned on Z, denoted by Jl^a°(X\Z) > k, if for every pair of circuits 

c, d of total size s with the outputs of c having length £, 

P r \d(c(x,z),z) =x] <2e~k + e. 

We postpone the discussion of unpredictability entropy until Section 12. 

Asymptotic Definitions. All above definitions are with respect to a single distribution 

and fixed-size circuits. We are also interested in their asymptotic behaviors, so we consider 

distribution ensembles. In this case, everything is parameterized by n: X^n\ s(n), and e{n). 

In such a case, whether circuits in our definitions are determined after n is chosen (the 

nonuniform setting), or whether an algorithm of running time s(n) is chosen independent 

of n (the uniform setting) makes a difference. We consider the nonuniform setting. 

We omit the subscripts s(n) and e(n) when they "denote" any polynomial and neg­

ligible functions, respectively (e(n) is negligible if e(n) €E n - ^ 1 ' ) . More precisely, we 

write HHILL(X(Tl)) > k{n), if there is a distribution ensemble Y^ such that Hoo(^ (n )) > 

k(n) for all n, and for every polynomial s(n), there exists a negligible es(n) such that 

( l ( n ' , y ( n >) < es(n). Similarly for the other definitions. 
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Chapter 10 

Separating HILL Entropy from 
Yao Entropy 

10.1 Separating HILL Entropy from Yao Entropy 

In this section we construct a joint distribution (X, Z),1 such that given Z, the distribution 

X has high Yao but low HILL entropy; namely, HYao(X\Z) » HH I L L(^I^)- T h i s is a 

separation of conditional HILL and Yao entropies. Since Z will be simply a polynomially 

long random string, this result can also be viewed as a separation of Yao entropy and HILL 

entropy in the Common Reference String (CRS) model. (In this model one assumes that 

a uniformly-distributed string of length q(n), for some fixed polynomial g, is accessible to 

everyone.) 

Our construction uses a non-interactive zero knowledge proof system, so we describe it 

briefly in the following section. 

10.2 Non-Interactive Zero Knowledge (NIZK) 

NIZK was introduced by Blum et al. [6, 5]. For our purposes, a single-theorem variant 

suffices. Let A be a positive polynomial and L e MV be a language that has witnesses of 

length n for theorems of lengths (A(n — 1), A(n)]. (It is easier for us to measure everything 

in terms of witness length rather than the more traditional theorem length, but they are 

'Actually, (X, Z) should be defined as a distribution ensemble (X^n\ Z^), but we'll omit the superscript 
for ease of notation. 
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anyway polynomially related for the languages we are interested in.) NIZK works in the 

CRS model. Let q be a positive polynomial, and let the CRS be r *— Uq^ when witnesses 

are of length n. A NIZK proof system for L is a pair of polynomial-time Turing machines 

(P, V), called the prover and the verifier (as well as the polynomial q) such that the following 

three conditions hold. 

1. Completeness: \/(f> G L with NP witness w, if ir = P(<p, w, r) is the proof generated by 

P, then Pr r <_^ ( n )[V(^7r,r) = 1] = l.2 

2. Soundness: Call r bad if 3(f> ^ L, Sir', such that V(</>, 7r',r) = 1 (and 500c! otherwise). 

Then P r r _ y w [ r is bad] is negligible in n. 

3. Zero-knowledgeness: There is a probabilistic polynomial time Turing machine SIM 

called the simulator, such that for every cf) € L and every witness w for 0, 

SIM(0) = {(f), IlsiMi -RSIM) is computationally indistinguishable from (0, II, R) = {r <— 

Uq(n) ; 7T *- P(0,w,r) : (0,7r,r)}. 

For our analysis, we need two additional properties. First, we need the proofs n not 

to add too much entropy. For this, we use ideas on unique NIZK by Lepinski, Micali and 

shelat [34]. We do not need the full-fledged uniZK system; rather, the single-theorem system 

described as the first part of the proof of [34, Theorem 1] suffices (it is based on taking 

away most of the prover freedom for the single-theorem system of [5]). The protocol of [34] 

is presented in the public-key model, in which the prover generates the public key (x, y) 

consisting of an n-bit modulus x and n-bit value y 6 Z*. To make it work for our setting, 

we simply have the prover generate the public key during the proof and put it into n. Once 

the public key is fixed, the prover has no further choices in generating n, except choosing 

a witness w for <f> € L (note that this actually requires a slight modification to the proof of 

[34], which we describe in Appendix A). 

The second property we need is that the simulated shared randomness i?siM is indepen­

dent of the simulator input 4>. It is satisfied by the [34] proof system (as well as by the [5] 

2If P is probabilistic, the probability is taken over the choice r and random choices made by P. 
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system on which it is based). 

The zero-knowledge property of the [34] proof system is based on the following assump­

tion (the other properties are unconditional). 

Assumption 1 (Quadratic Residuousity [22] for Blum Integers). For all probabilistic poly­

nomial time algorithms P, if pi and p2 are random n/2-bit primes congruent to 3 modulo 

4, y is a random integer between 1 and p\Pi with Jacobi symbol (-~— j = 1, and b = 1 if 

y is a quadratic residue modulo p\P2 and 0 otherwise, then 11/2 — ~Pr[P(y,pip2) — °]\ *s 

negligible in n. 

The formal statement of the properties we need from [34] follows. 

Lemma 7 ([34]+Appendix A). If the above assumption holds, then there exists an NIZK 

proof system for any language L G MV with the following additional properties: (1) if r is 

good and <p has t distinct witnesses w, then the number of proofs n for cf> that are accepted 

by V is at most t22n, and (2) the string Rs\u output by the simulator is independent of the 

simulator input 4>. 

10.3 The Construction 

Our intuition is based on the separation by Wee [60], who demonstrated an oracle relative 

to which there is a random variable that has high Yao and low HILL entropy. His oracle 

consists of a random length-increasing function and an oracle for testing membership in 

the sparse range of this function. The random variable is simply the range of the function. 

The ability to test membership in the range helps distinguish it from uniform, hence HILL 

entropy is low. On the other hand, knowing that a random variable is in the range of a 

random function does not help to compress it, hence Yao entropy is high. 

We follow this intuition, but replace the length-increasing random function and the 

membership oracle with a pseudorandom generator and an NIZK proof of membership, 

respectively. Our distribution X consists of two parts: 1) output of a pseudorandom gen­

erator and, 2) an NIZK proof that the first part is as alleged. However, an NIZK proof 
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requires a polynomially long random string (shared, but not controlled, by the prover and 

the verifier). So we consider the computational entropy of X, conditioned on a polynomially 

long random string r chosen from the uniform distribution Z = Uq(n). 

Let G : {0, l } n —> {0, l}x(-n\ for some polynomial A, be a pseudorandom generator 

(in order to avoid adding assumptions, we can build based on Assumption 1), and let 

((P, \/),q) be the NIZK proof system guaranteed by Lemma 7 for the MV language L = 

{(p | 3a such that (f> = G(a)}. Let Z = R = Uq(n). Our random variable X consists of two 

parts (G([/n),7r), where IT is the proof, generated by P, that the first part is an output of 

G. More precisely, the joint distribution (X, Z) is defined as {a <— Un ; r <— Uq^ ; n <— 

P(G(a), a, r) : ((G(a), n), r)}. Note that because X contains a proof relative to the random 

string r, it is defined only after the value r of Z is fixed. 

Lemma 8 (Low HILL entropy). HHILL(X|Z) < 3n + 1. 

Proof. Suppose there.is some collection {YT}r^z for which Hoo(^|-^) > 3n + 1. We will 

show that there is a distinguisher that distinguishes (X, Z) from (Y, Z). In fact, we will use 

the verifier V of the NIZK proof system as a universal distinguisher, which works for every 

such Y. 

Let p(r) = max yPr[y r = y] be the probability of most likely value of the random 

variable Yr. 

When r is good, the number of (4>,n) pairs for which V(0,7r,r) = 1 is at most 23n: 

the total number 2" of witnesses times the number of proofs 22n for each witness. Now, 

parse y as a theorem-proof pair. The number of y such that V(y,r) = 1 is at most 23", 

and each of these y happens with probability at most p(r). Therefore, when r is good, 

Pry^y r[V(y,r) = 1] < 23np(r), by the union bound. Hence, for any r, Pr3/^yT.[V(y, r) — 

1 A r is good] < 23np(r) (for good r this is the same as above, and for bad r this probability 

is trivially 0, because of the conjunction). 
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Now consider running V on a sample from (Y, Z). 

P r [V(y, r) = 1] < P r [r is bad] + P r [V(y, r) = 1 A r is good] 
(j/,r) —(y,Z) r ^ Z (j/,r) —(y,Z) 

< negl(n) + E [ P r [V(y, r) = 1 A r is good]] 
r ^ z s/«-yr 

< negl(n)+ E [23np(r)] 
r^Z 

3n„ 
Li [^ 
-Z 

1 
< negl(n) + 

(the last inequality follows from the definition of H<x>: 2~**0°(ylz) = Er^-z[p(r)] < 2~(3n+1)). 

Since Pr(x,r)<-(x,z)[V{x>r) = 1] = 1> V distinguishes (X, Z) from (Y, Z) with advantage 

close to 1/2. ' • 

Lemma 9 (High Yao entropy). If Assumption 1 holds, then HYao(X\Z) > A(n). 

Proof. Let s(n) be a polynomial. The following two statements imply that under Assump-

def 

tion 1, es(n) = cdist s(n)((X, Z), SIM(£/\(n))) is negligible, by the triangle inequality. 

1. cdists{n)((X, Z),S\M(G{Un))) is negligible. Indeed, fix a seed a G {0,1}" for G, 

and let (Xa,Z) = {r <— Uq(ny,iT <— P(G(a), a , r ) : ((G(a), 7r),r)}. By the zero-

knowledge property, we know that cdists^((Xa, Z),S\M(G(a))) is negligible. Since 

it holds for every a € {0,1}", it also holds for a random a; we conclude that 

cd±sts{n)((X,Z),S\M(G{Un))) is negligible. 

2. cdists(n)(SIM(f/x(n)), S\M(G(Un))) is negligible, because G is a pseudorandom gener­

ator. 

By definition of es(n), if the compressor and decompressor c and d have total size t, then 

Pr \d(c(x, z),z) = x] - Pr \d(c(x,z),z) = x] < es(n), 
(x,z)^(X,Z)1 (x,z)^S\M(Ux(n))

1 ~ 

where s = t + (size of circuit to check equality of strings of length |x|), because we can use 

d(c(-, •), •) together with the equality operator as a distinguisher. 

Let the output length of c be £. Then P r ^ ^ s n ^ i / )[d(c(x, z)i z) = x] < 2e~x(n\ 

because for every fixed z, x contains <f> £ U\{n) (because by Lemma 7, z is independent of 
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4> in the NIZK system we use). Hence Pr(x,z)<-(x,z)[d{c(x, z), z) — x] < 2e~x^ + es(n), 

and ~Kl*?n\ t,nAX\Z) > A(n). For every polynomial t(n), the value s(n) is polynomially 

bounded, and therefore es(n) is negligible, so tiyao(X\Z) > A(n). D 

Remark 1. In the previous paragraph, we could consider also the simulated proof n (recall 

x = (4>, n)) when calculating Pr^XtZ^s\hA(Ux,n))[d(c(x, z), z) = x] for even higher Yao entropy. 

A simulated proof IT contains many random choices made by the simulator. Although the 

simulator algorithm for [34] is not precisely specified, but rather inferred from the simulator 

in [5], it is quite clear that the simulator will get to flip at least three random coins per clause 

in the 3-CNF formula produced out of <f> in the reduction to 3-SAT (these three coins are 

needed in order to simulate the location of the (0,0,0) triple [34, proof of Theorem 1, step 9] 

among the eight triples). This more careful calculation of Pr^z^siMft/w^) [d(c(x, z), z) = x] 

will yield the slightly stronger statement HYa0(X\Z) > A(n) + Sj(n), where j(n) is the 

number of clauses in the 3-CNF formula. This more careful analysis is not needed here, but 

will be used in Section 11.3. 

Since for any polynomial A(n), we have pseudorandom generators of stretch A, Lemma 8 

and Lemma 9 yield the following theorem. 

Theorem 10 (Separation). Under the Quadratic Residuosity Assumption, for every polyno­

mial X, there exists a joint distribution ensemble (X^n\ Z^) such that HYao(X^ | Z^1) > 

A(n) and B.HiLL(X^ | Z^) < 3n + 1. Moreover, Z^ = Uq{n) for some polynomial q{n). 
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Chapter 11 

Randomness Extraction 

As mentioned in the introduction, one of the main applications of computational entropy 

is the extraction of pseudorandom bits. Based on Theorem 10, in this section we show 

that the analysis based on Yao entropy can yield many more pseudorandom bits than the 

traditional analysis based on HILL entropy. Although Theorem 10 is for the conditional 

setting, we will see an example of extraction that benefits from the conditional-Yao-entropy 

analysis for the unconditional setting as well. 

Before talking about extracting pseudorandom bits from computational entropy, let us 

look at a tool for analogous task in the information-theoretic setting: an extractor takes 

a distribution Y of min-entropy k, and with the help of a uniform string called the seed, 

"extracts" the randomness contained in Y and outputs a string of length m that is almost 

uniform even given the seed. 

Definition 10 ([42]). A polynomial-time computable function E : {0, l } n x {0, l}d —> 

{0, l}m x {0, l}d is a strong (k,e)-extractor if the last d output bits of E are equal to the 

last d input bits (these bits are called seed,), and dist((E(X,Ud),Um x Ua) < e for every 

distribution X on {0, l } n with Hoo(-^0 > k. The number of extracted bits is m, and the 

entropy loss is k — m. 

There is a long line of research on optimizing the parameters of extractors: minimizing 

seed length, minimizing e, and maximizing m. For applications of primary interest here— 

using extracted randomness for cryptography—seed length is less important, because strong 
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extractors can use non-secret random seeds, which are usually much easier to create than 

the secret from which the pseudorandom bits are being extracted. It is more important to 

maximize m (as close to k as possible), while keeping e negligible.1 

11.1 Extracting from Conditional HILL Entropy 

It is not hard to see that applying an extractor on distributions with HILL entropy yields 

pseudorandom bits; because otherwise the extractor together with the distinguisher violate 

the definition of HILL entropy. We show the same for the case of conditional HILL entropy. 

We reiterate that in the conditional case, the variable Z is given to the distinguisher who 

is trying to tell the output of the extractor from random. 

Lemma 11. IfU^s
L(x\z) > k, then for any (k-log ±,e2)-extractor E : {0,1}" x {0, l}d -» 

{0 , l} m , 

cd i s t ({(i, z) • - (X, Z) : (E{x, Ud), z)}, Um x Ud x Z) < ei + e2 + 5, 
s' 

where s' = s — size(E). 

Proof. H^1'is
L(^|-^) > k means that there is a collection of distributions {Yz}z€z such that 

cdistS((X,Z)(Y,Z)) < ei, and Hoo(^l^) > k. By Markov's inequality, Prz e Z[HOo0'*) < 

k — log | ] < 5. Hence, the extractor works as expected in all but 5 fraction of the cases; that 

is, for all but 5 fraction of z values, dist(E(Yz,U,i),Um x Ud) < £2- Taking expectation 

over z £ Z, we get 

d i s t ({(y, z) <- (Y, Z) : (E(y, Ud), z)}, Um x Ud x Z) < e2 + 5 , 

because d i s t is bounded by 1. The desired result follows by triangle inequality. • 

Remark 2. The entropy loss of E is at least 2 log j — 0(1), by a fundamental constraint 

on extractors [47], giving us a total entropy loss of at least log | + 2 log j — 0(1) ' The loss 

of log | can be avoided for some specific E, such as pairwise-independent (a.k.a. strongly 

1 This is in contrast to the derandomization literature, where a small constant e suffices, and one is more 
interested in (simultaneously) maximizing m and minimizing d. 
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universal) hashing [8], as shown in [14, Lemma 4.2]; because pairwise-independent hashing 

has optimal entropy loss of 2 log j — 2, this gives us the maximum possible number of 

extracted bits. The loss of log | can be also avoided when mmzez H<x>{Yz) > fc (as is the 

case in, e.g., [15]). 

Using an extractor on distributions with HILL entropy (the method that we just showed 

extends to conditional HILL entropy) is a common method for extracting pseudorandom 

bits. HILL entropy is used, in particular, because it is easier to analyze than Yao entropy. 

In fact, in the unconditional setting, the only way we know how to show that a distribu­

tion has high Yao entropy (incompressibility) is by arguing that it has high HILL entropy 

(indistinguishability). Nevertheless, Barak et al. [3] showed that some extractors can also 

extract from Yao entropy. 

11.2 Extracting from Conditional Yao Entropy 

Barak et al. [3] observed that extractors with the so-called reconstruction procedure can 

be used to extract from Yao Entropy. Thus, Theorem 10 (HY a o(^ |Z) » HHILL(X|Z)) 

suggests that such a reconstructive extractor with a Yao-entropy-based analysis may yield 

more pseudorandom bits than a generic extractor with a traditional HILL-entropy-based 

analysis. We begin with a definition from [3], with minor modifications for our purposes 

(see explanation following the definition). 

Definition 11 (Reconstruction procedure). An (£, e)-reconstruction for a function E : 

{0,1}" x {0, l}d —> {0, l } m x {0, \}d (where the last d output bits are equal to the last d 

input bits) is a pair of randomized polynomial-size oracle circuits C^'' : {0, 1}" —> {0,1}^ 

and £>(•) : {0,1}^ -> {0,1}", that share the same random coins. Furthermore, for every x 

andT, tf\Pr[T(E{x,Ud)) = 1] -Pr[T(Um x Ud) = 1]| > e, then VT[DT\CT\X)) = x\ > 1/2 

(the probability is over the shared random coins of C and D). 

Our definition of reconstruction procedure differs from [3] in the following ways: 
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• It is with respect to strong extractors2 (as opposed to generic extractors) since we will 

only be using extractors of this kind. 

• We let C and D be circuits instead of Turing machines because we define the Yao 

entropy with respect to circuit adversaries. 

• We let C and D share their random coins. The advantage is that £ can be smaller 

because the output of C does not need to contain anything about the coins. This 

is especially useful when later we want to extract almost all of Yao entropy from a 

distribution, using a reconstructive extractor. We also give C oracle access to T. This 

broadens the class of possible C and D (since if C doesn't use its oracle and uses a 

subset of random coins that are not used by D, then we are in the original definition 

of [3]), and makes Lemma 12 applicable to more situations. It also enables us to prove 

Theorem 14 later. 

Trevisan [58] showed, implicitly, that any E with an (£, e)-reconstruction is an (£ + 

log -,3e)-extractor. Thus, any function with a reconstruction procedure is an extractor; it 

is called a reconstructive extractor. 

Barak et al. [3] showed that reconstructive extractors can be used to extract pseudo­

random bits from distributions with Yao entropy. We extend the proof of Barak et al. so 

that their result holds for the conditional version of Yao entropy. 

Lemma 12. Let X be a distribution with H^a
s°(X\Z) > k, and let E be an extractor with an 

(£, e)-reconstruction (C, D), where £ = k — log j . Then E extracts psuedorandom bits from 

X: namely, cdists>((E(X, Ud), Z), Um x Ud x Z) < 5e, where s' = s/(size(C)+size(D)). 

Proof. Assume, for the purpose of contradiction, that there is a distinguisher T of size s' 

such that \Pr[T(E(X,Ud),Z) = 1] - Pr[T(C/m x Ud x Z) = 1]| > 5e. By the Markov 

inequality, there is a subset S in the support of (X, Z) such that Pr[(X, Z) G S] > 4e, and 

V(x,z) e S, \Pr[T(E{x,Ud),z) = l)-Pr[T(Um x Ud, z) = 1]| > e. For every pair (x, z) e S, 

2Recall that a strong extractor is an extractor that also outputs its seed. 
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~Pr[DT('<z\CT(''z\x)) = x] > 1/2, where the probability is over the shared random coins of 

C and D (note that fixing z is important, because C and D are defined with respect to an 

oracle that does not expect z as an input). Thus, there is a fixing of the random choices of C 

and D, denoted by circuits C,D, such that Pr^XtZ)^XtZ)[DT(-'^(CT^'z)(x)) = x] > 2e. Let 

c(x,z) = ( ^ ^ ( x ) and d(y,z) = DT^^{y) be the compression and decompression circuits, 

respectively. Then Pr(x>2)^(x,z)[^(c(a;) z)>2) = x] > 2e = 2^_fc + e, a contradiction. • 

The above lemma does not yield more pseudorandom bits when given a distribution that 

has high Yao but low HILL entropy, unless we have a reconstructive extractor with long 

output length (compared to generic extractors, which work for HILL entropy). Fortunately, 

given any reconstructive extractor, there is a simple way to increase the number of pseudo­

random bits extracted: apply the extractor multiple times on the same input distribution 

but each time with an independent fresh seed.3 Furthermore, there do exist reconstructive 

def 

extractors; e.g., the well-known Goldreich-Levin extractor: GL(x,r) = (x • r) o r, where 

o denotes concatenation and • denotes inner product, is a reconstructive one. Below, we 

describe more precisely how to extract most of Yao entropy from a distribution using the 

GL extractor. 

We first rephrase a lemma from [19] to show that GL is a reconstructive extractor, and 

then show that we can indeed apply GL on the same input distribution multiple times. 

Lemma 13 (Goldreich-Levin [19]). There is a randomized oracle Turing machine I such 

that given any e > 0 and any oracle T : {0, l} n+ ! —» {0,1}, runs in time poly(n, ^) and 

outputs a set L of size poly(n, ^) so that for every x € {0, l}n 

| P r [T(x • r,r) = 1] - P r [T(u,r) - 1]| > e => P r [x € L] > \ 
r-^Un u<—U\,r<—Un I s coins Z 

For a proof, see Lemma 1 in [19] and Theorem 1 in [57]. 

3This requires a long seed, but as mentioned earlier in this Chapter, our primary concern is on the 
extracted randomness instead of seed length. 
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To see that GL is reconstructive, simply let the reconstruction procedure (C, D) run / 

to get the set L. On input x, the machine C outputs the index of x in the set L (or some 

arbitrary string if x $ L) so that later D can restore x. Since C and D share the same 

random coins, they produce the same L. And x can be reconstructed with probability more 

than 1/2. 

Theorem 14. Let GL : {0, l } n x {0, l } n -» {0,1} x {0,1}" be the Goldreich-Levin extractor 

with (£, e)-reconstruction (C, D), and let X be a distribution over {0, l } n with H^a
s°(X\Z) > 

p + e + log\. Define E : {0,1}™ x {0, l}*"1 -» {0,1}P x {0, \}pn as follows: 

E{x,r1,...,rp) = ((x-ri)o---o(x-rp))o(rio---orp). 

Then cdistsi(E(X,Upn),Z),Up x U^ x Z) < 5pe, where s' = siz^c)°+^ze(D)' 

Proof. The proof is by hybrid argument. For a fixed a; and 2, let p(j) be Pr[T(((x • 

ri) o • • • o (x • rj) o bj+\ o • • • o bp) o [r\ o • • • o rp), z) = 1], where the probability is over 

{ n , . . . , rp <— [/„, bj+i, • • • ,bp <— t/i}. Now assume, for the purpose of contradiction, that 

there is a distinguisher T of size s' such that | Pr[T(£(X, C/pn), Z) = 1] - Pr[T{Up x Upn x 

Z) = 1]| > 5pe; that is, | "EI(X,Z)^(X,Z)\P(P) — p(0)]| > 5/oe. By the triangle inequality, there 

exists an i e { l , . . . , p } such that \~Ei[x,z)^-{x,z)\p{^) ~Pi} ~ 1)]| > 5e. So, there exists a 

fixing of all the rj and bj except V{ and 6j for which |E(i,2)<-(x,z)[Pi — Poll > 5e, where 

pi = Pr[T(((x • n ) o • • • o (x • rj_!)o (x • rj) ofy+1 o • • • o bp) o (n o • ••• o rp), z) = 1] 

p0 = Pr[T(((x • ri) o • • • o (x • rj_i)o fcj ob i+1 o • • • o bp) o (n o • • • o rp), z) = 1] 

and the probabilities are taken over only j-* and frj.By the Markov inequality, there is a subset 

S in the support of (X, Z) such that Pr[(X, Z) G 5] > 4e, and V(x, z) € S, \pi - p0\ > e. 

In order to get a contradiction, we want to use C and D to compress x given z. C and 

I? need to call a distinguisher that can distinguish ((x-r^),^) from (&i,rj). However, we do 

not have such a distinguisher: rather, we have T, which, from the above analysis, we know 

we can use for some fixed set of rj and bj (for j ^ i) as long as we also provide it with x • rj 
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for j < i. The fixed set of Tj and bj for j ^ i can be simply hardwired into C and D. The 

values x • rj are more problematic: C can compute them because it has access to x, but 

D cannot. So we need to modify C to compute the x • Vj and append them to its output, 

and modify D to use them. Call the resulting modified procedures (C,D). Note that the 

output length of C is at most p + 1 — 1, because it appends at most p — 1 bits to the output 

of C. 

For every pair (x,z) € S, Pr[DT('z\CT(-''z\x)) = x] > 1/2, where the probability is 

over the shared random coins of C and D. Thus, there is a fixing of the shared random coins 

of C and D, denoted by circuits C,D, such that Pr{x^z)^X:Z)[DT^'z\CT^'z){x)) = x] > 2e. 

Let c(x,z) = CTt>z\x) and d(y,z) = DT^'z\y) be the compression and decompression 

circuits, respectively. Recall that the output length of c is less than p + £, and thus 

Pr(x„*MX,z)M(c(x, z),z) = A > 2 e = 2^+^-^+^+ 1°s .) + e, a contradiction. • 

For the Goldreich-Levin extractor, I is the length of the index for the set L, which 

is 0(log j). Then Theorem 14 shows that E extracts p pseudorandom bits out of any 

distribution that has Yao entropy p + ^ + log^- = p + 0(log ^ ) , which means that it is 

possible to extract almost all of Yao entropy (e.g., if the negligible e = 2~polylog(n) suffices, 

then all but a polylogarithmic amount of entropy can be extracted). 

We remark, however, that the resulting extractor is not a reconstructive one. The 

reason being that by our definition, reconstruction procedures C and D do not depend on 

T. This property of C and D is crucial to the proof of Lemma 12 because the distinguisher 

T depends on z. If C and D were to depend on T, they would depend on z too, which would 

make the proof fail. This is in contrast to the unconditional setting, where we may allow 

reconstruction procedures to depend on T (see, e.g., Section 3.3 in the survey by Shatiel [53]: 

there exist CT and DT for every T) and still be able to extract pseudorandomness from Yao 

entropy. 

Theorem 14 can be generalized to strong extractors (not just Goldreich-Levin) with out­

put length m + d, for m > 1. More precisely, we can extract pm (instead of p) pseudorandom 
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bits out of any distribution that has Yao entropy pm + I + log i (instead of p + £ + log ^). 

Using the distribution of Theorem 10, we can set e = 2~n to extract X(n) — 0(n) bits 

from X that are pseudorandom even given Z (note that here n is not the length of X; 

rather, X(n) is). This is more than the linear number of bits extractable from X using the 

analysis based on conditional HILL entropy. 

11.3 Unconditional Extraction 

In this section, let (X; Z) = {(G(Un),U),R) = {a <- Un ; r «- Uq{n) ; TT «- P (G(a) , a , r ) : 

((G(a),Tr),r)} as defined in Section 10.3. The question is: how many pseudorandom bits 

can we extract from the unconditional distribution (X, Z)l Surprisingly, analysis based on 

conditional entropy yields more bits than unconditional analysis, demonstrating that the 

notion of conditional entropy may be a useful tool even in the analysis of pseudorandomness 

of unconditional distributions. 

Analysis based on unconditional entropy. The straightforward way is to apply an 

extractor on (X, Z). This gives us almost k pseudorandom bits provided that HH I L L(^, Z) > 

k, or H Y a o (^ , Z) > k for reconstructive extractors (see previous sections). However, the best 

we can show is that HH I L L(^, Z) = X(n) + q(n) + 0(n) (the analysis appears in Appendix B), 

and hence we cannot prove, using HILL entropy, that more than X(n) + q{n) + 0{n) bits 

can be extracted. On the other hand, we do not know if H Y a o (^ , Z) is higher; this is closely 

related to the open problem of whether HILL entropy is equivalent to Yao entropy, and 

appears to be difficult.4 Thus, analysis based on unconditional entropy does not seem to 

yield more than A(n) + q(n) + 0(n) bits. 

4 To show that HY a o(X,Z) is high, one would have to show that the pair {X,Z) cannot be compressed; 
the same indistinguishability argument as in Lemma 9 does not work for the pair (X, Z), because in the 
simulated distribution, Z is simulated and thus has less entropy. It is thus possible that both the real 
distribution (where Z is random and 0 in X is pseudorandom) and the simulated distribution (where 4> is 
random and Z is pseudorandom), although indistinguishable, can be compressed with the help of the proof 
n. 
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More bits from conditional Yao entropy. Analysis based on conditional HILL entropy 

seems to yield even fewer bits (see Lemma 8). But using conditional Yao entropy, we get 

the following result. 

Lemma 15. It is possible to extract 4A(n) + q(n) — 0(n) pseudorandom bits out of (X, Z). 

Sketch. According to Remark 1 following Lemma 9, we can show that the conditional 

Yao entropy HYao(X\Z) > A(n) + 37(n), where 7(n) is the number of clauses in the 3-

CNF formula produced from <f> hi the reduction from L to 3-SAT. Since 7(n) > A(n), we 

can extract 4A(n) — 0(n) bits from X that are pseudorandom even given Z, by the last 

paragraph of Section 11.2. Noting that Z is simply a uniform string5, we can append it to 

the pseudorandom bits extracted from X and obtain an even longer pseudorandom string. 

Thus, we get 4A(n) + g(n) — 0{n) pseudorandom bits using the analysis based on conditional 

Yao entropy. • 

5In case Z is not uniform but contains some amount of entropy, we can apply another extractor on it. 
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Chapter 12 

Unpredictability Entropy 

In this chapter, we introduce a new computational entropy, which we call unpredictability 

entropy. Analogous to min-entropy, which is the logarithm of the maximum predicting 

probability, unpredictability entropy is the logarithm of the maximum predicting probabil­

ity where the predictor is restricted to be a circuit of polynomial size. Note that in the 

unconditional setting, unpredictability entropy is just min-entropy; a small circuit can have 

the most likely value hardwired. In the conditional setting, however, this new definition can 

be very different from min-entropy, and in particular, allows us to talk about the entropy of 

a value that is unique, such as gxy where gx and gy are known to the observer, and possibly 

even verifiable, such as the preimage x of a one-way permutation / , where y = f(x) is 

known to the observer. 

Definition 12 (Unpredictability entropy). For a distribution (X,Z), we say that X has 

unpredictability entropy at least k conditioned on Z, denoted by He"f(X\Z) > k, if 

there exists a collection of distributions Yz (giving rise to a joint distribution (Y, Z)) such 

that cdis t s ( (X, Z), (Y> Z)) < e, and for all circuits C of size s, 

Pr[C(Z) = Y] < 2~k. 

Remark 3. The parameter e and the variable Y do not seem to be necessary in the 

definition; we can simply require Pr[C(Z) = X] < 2~k. However, they make this definition 

smooth [49] and easier to compare with existing definitions of HILL and Yao entropy. 
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Remark 4. Note that our entropy depends primarily on the predicting probability, as 

opposed to on the size of the predicting circuit or the combination of both (see e.g., [56, 

25]). We choose to have s fixed, in order to accommodate distributions with nonzero 

information-theoretic entropy; otherwise the computational entropy of such distribution 

would be infinite because the predicting probability doesn't increase no matter how big the 

predicting circuit grows. For the case of one-way function, unpredictability entropy is what 

is often called "hardness." This notion is more general, and provides a simple language 

for pseudorandomness extraction: namely, a distribution with computational entropy k 

contains k pseudorandom bits that can be extracted (see below). 

Relat ion to Other Notions and Bit Ext rac t ion In the rest of this chapter we show 

that high conditional HILL entropy implies high unpredictability entropy, which in turn 

implies high conditional Yao entropy. Note that, assuming exponentially strong one-way 

permutations / exist, unpredictability entropy does not imply conditional HILL entropy: 

simply let (X,Z) = (x,f(x)). 

Lemma 16. H™S
LL(X\Z) > k => Ke7(X\Z) > k. 

Proof. H™S
LL(X\Z) > k means that there is a collection of {Yz}z&z such that H.oo(Y\Z) > k 

and cdis t s ( (X, Z), (y, Z)) < e. And Hoo(y|Z) > k means that E z^z[maxy P r [F = y\Z = 

z}] < 2~k, which implies that for all circuits C of size s, Pr[C(Z) = Y) < 2~k. D 

Lemma 17. uZP(X\Z) >k=> M^S°(X\Z) > k. 

Proof. He,"P(^|'2') > k means that there is a collection of distributions {Yz}zEz such that 

cdists((X,Z), (Y,Z)) < e, and for all circuits'C of size s, Pr[C(Z) = Y] < 2~k. We will 

show that Hoa°(Y\Z) > k, which in turn implies H^S°(X\Z) > k. 

Suppose for contradiction that H^a
s°(^\Z) < k. Then there exists a pair of circuits c, d 

of total size s with the outputs of c having length £, such that Pr^yz^^Y,z)[d{c(y,z),z) = 

y] > 2e~k. Because \c(y, z)\ = I, guessing the correct value of c(y,z) is at least 2~e, so 
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~Pr(a,y,z)<-(ue,Y,z)[d(aiz) — v\ > ^~k ' 2~e = 2_/c, a contradiction since d(a,-) (with some 

fixing of a) is a circuit of size at most s. So Jlo*°(Y\Z) > k. 

Next, suppose for contradiction that \£[3°{X\Z) < k. Then there is a pair of circuits c, d 

of total size s with the outputs of c having length £, such that Pr(x,z)^(x,Z)[^(c(x!2;)> z) — 

x] > 2^~k + e. But Pr(ytZ)i_(ytz)[d(c(y, z), z) = y] < 2i~k, which means that d(c(-, •), •) can 

be used to distinguish (X, Z) from (Y, Z) with advantage more than e, a contradiction to 

cdis t s ( (X, Z), (Y, Z)) < e. Hence fg*°(X\Z) > k. D 

From Section 11.2, we know how to extract almost k bits from distributions with Yao 

entropy k, by using reconstructive extractors. Lemma 17 implies that the same method 

works for unpredictability entropy. Thus, the notion of unpredictability entropy allows for 

more general statements of results on hardcore bits (such as, for example, [19, 56]), which 

are usually formulated in terms of one-way functions. Most often these results generalize 

easily to other conditionally unpredictable distributions, for instance, the Diffie-Hellman 

distribution (gxy \g,gx,gy)- However, such generalization is not automatic, because a pre­

diction of a one-way function inverse is verifiable (namely, knowing y, one can check if the 

guess for f~l(y) is correct), while a guess of a value of a conditionally unpredictable dis­

tribution in general is not (indeed, the Diffie-Hellman distribution does not have it unless 

the decisional Diffie-Hellman problem is easy). Thus, it would be beneficial if results were 

stated for the more general case of unpredictable distributions whenever such verifiability 

is not crucial. Unpredictability entropy provides a simple language for doing so. 
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Modifications to the Proof of [34] 

The proof of Theorem 1 in [34] requires the n-bit modulus x chosen by the prover (and, in 

our case, included as part of the proof) to be a Blum integer, i.e., a product of two primes 

that are each congruent to 3 modulo 4. However, the proof n (using the techniques from [5]) 

guarantees only that x is "Regular(2)," i.e., is square-free and has exactly two distinct odd 

prime divisors. In other words, we are assured only that x is of the form plq3 for some odd 

primes p, q and some i,j not simultaneously even. Soundness does not suffer if a prover 

maliciously chooses such an x that is not a Blum integer, but the uniqueness property does: 

there may be more than one valid proof 7r, because TT consists of square roots s of values 

in Z* such that the Jacobi symbol (§) = 1 and s < x/2, and there may be more than one 

such square root if x is not a Blum integer. 

One approach to remedy this problem is to use the technique proposed in countable 

zero-knowledge of Naor [39, Theorem 4.1]: to include into 7r the proof that x is a Blum 

integer. Another, simpler, approach (which does not seem to work for the problem in [39], 

because the length of the primes is important there) is to require the verifier to check that 

x = 1 (mod 4). This guarantees that either p = q = 3 mod 4 and i, j are odd, in which 

case uniqueness of a square root r < x/2 with ( j ) = 1 is guaranteed, or pl = qJ= 1 mod 4, 

in which case simple number theory (case analysis by the parity of i, j) shows that half the 

quadratic residues in Z* have no square root r with ( j ) = 1. Thus, such an x that allows 

for non-unique proofs is very unlikely to work for a shared random string r, and we can 

55 
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simply add strings r for which such an x exists to the set of bad strings (which will remain 

of negligible size). 



www.manaraa.com

Appendix B 

Unconditional HILL Entropy of 

Recall that (X,Z) = ((G(Un),U),R) = {a <- Un ; r <- Uq{n) ; n <- V(G(a),a,r) : 

((G(a),7r),r)}. Below, we show that HHILL(X,Z) > \(n) + q(n) + 0(n); it is unclear if 

higher HILL entropy can be shown. The discussion assumes some familiarity with the NIZK 

system for 3-SAT, by Lepinski, Micali, and shelat [34]. 

By the zero-knowledgeness, the output distribution (A"SIM,^SIM) of the simulator is in­

distinguishable from (X, Z). So HH I L L(^, Z) is no less than the min-entropy of (XSIM, ^SIM)-

We count how many choices the simulator SIM has: there are, 

• 2x(n> theorems to prove, 

• fewer than 22n proving pairs to choose from (a proving pair is an n-bit Blum integer 

x and an ro-bit quadratic residue y G Z*), 

• 2q(jl}~K<Jl} choices for shared "random" string r, where «(n) is the number of Jacobi 

symbol 1 elements of Z* included in r (because in the simulated r, these elements 

must be quadratic residues in Z*), 

• 2R(n> choices for claiming, in the simulated proof, whether each of the Jacobi symbol 

1 elements in r is a quadratic residue or a quadratic nonresidue (the simulator gets 

to make false claims about that, because in the simulated r, they are all residues). 

57 
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Taking the logarithm of the number of choices, we have HH I L L(^, Z) > X(n) -f q(n) + 0(n). 

This seems to be the best we can do, as we do not know whether there are other distribution 

that is indistinguishable from (X, Z). 
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