
www.manaraa.com

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

BUTTERFLY EFFECT IN CRYPTOGRAPHY:

CONSEQUENCES OF CHANGES IN DEFINITIONS

by

CHUN-YUAN HSIAO

B.S., National Taiwan University, 1999
M.S., National Taiwan University, 2001

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2010

www.manaraa.com

UMI Number: 3399490

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation Publishing

UMI 3399490
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

uest
ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

www.manaraa.com

Approved by

First Reader J<*v4>/
Leonid Reyzin, Ph.'
Associate Professor of Computer Science
Boston University

Second Reader
Gene Itkis, Ph.D.
Technical Staff of Lincoln Laboratory
Massachusetts Institute of Technology

Third Reader ^LSt*»-*— / / ^ 7 - y ^ t - . — -
Steven Homer, Ph.D.
Professor of Computer Science
Boston University

www.manaraa.com

To M Y FATHER

F O N - Y U HSIAO

www.manaraa.com

Acknowledgments

I am deeply indebted to my advisor Leonid Reyzin for everything. He has been encourag­

ing, inspiring and patient. I am especially grateful for his help on my presentation skills.

Special thanks to Professor Gene Itkis, who created and ran the Applied Cryptography and

Electronic Security Group at Boston University Computer Science Department. Thanks

also to Professor Steve Homer, Professor Peter Gacs, and Professor George Kollios, who

served on my Ph.D. examination committee, and to many other Computer Science faculty

at Boston University who have helped me over the years in various ways. Thanks to the

crypto fellows Nenad, Scott, Robbie, Bhavana, Peng and many other peer graduate students

in the department who made my Ph.D. life more enjoyable.

I would like to thank my former advisor Chi-Jen Lu for his continuous support and help

even after my Master's degree.

As far as this dissertation is concerned, I would like to thank Yael Tauman Kalai for

many helpful discussions, Ron Rivest for assistance with the history of hashing, Vinod

Vaikuntanathan for secret-coin hashing examples, and Moni Naor for pointing out related

work. Thanks also to the Crypto 2004 a n d Eurocrypt 2007 anonymous referees for insightful

comments.

Lastly, I would like to thank my parents and brother. I cannot imagine how I could

have finished this long journey without their endless encouragement and support.

IV

www.manaraa.com

BUTTERFLY EFFECT IN CRYPTOGRAPHY:

CONSEQUENCES OF CHANGES IN DEFINITIONS

(Order No.)

C H U N - Y U A N HSIAO

Boston University Graduate School of Arts and Sciences, 2010

Major Professor: Leonid Reyzin, Associate Professor of Computer Science

ABSTRACT

Modern cryptography places a great deal of emphasis on definitions, because a precise

definition formalizes our intuition about a cryptographic primitive.

This dissertation consists of two parts. The first part demonstrates the importance of

definitional precision by examining a previously overlooked subtlety in defining a widely-

used primitive: the Collision Resistant Hash Function, or CRHF. The subtlety lies in the

method by which the CRHF key is generated: namely, whether a trusted party needs to

perform key generation (the "secret-coin" variant), or whether any public random string

can be used as the key (the "public-coin" variant). Adding a new technique to the so-called

"black-box separation" methodology, this thesis shows that these two variants of CRHF,

which were sometimes used interchangeably, are actually distinct in general. However, they

are also equivalent under certain conditions; the thesis identifies a precise and broad set of

such conditions.

The second part of this dissertation investigates two known definitions of entropy. Shan­

non has shown the equivalence of these two definitions by proving that the shortest compres­

sion length of a distribution is equivalent to the amount of randomness it contains. Cryp­

tographers are often interested in distributions that appear random to computationally-

bounded observers (for example, ciphertexts often have this property). In an attempt to

quantify the amount of this computational randomness, analogues of Shannon's notions of

compressibility and entropy have been proposed for the computationally-bounded setting.

v

www.manaraa.com

Whether these two notions remain equivalent is an interesting open question, with potential

applications to pseudorandom generation and cryptographic primitives that rely on it. This

thesis shows that they can differ vastly in a common cryptographic setting. One interesting

corollary of our work is that we can extract more pseudorandom bits from a distribution if

we choose the less commonly used notion of compressibility. In addition to presenting this

result, the thesis studies how to better extract pseudorandomness from distributions that

are computationally hard to compress.

VI

www.manaraa.com

Contents

List of Abbreviations ix

Introduction 1

I Secret-Coin vs . Publ ic-Coin 4

1 Background 5

2 Motivation and Our Results 7

2.1 Motivation 7

2.2 Our Results 9

3 Definitions and Notation 10

4 Dense Secret-Coin CRHF implies Public-Coin CRHF 13

5 Separating Secret-Coin CRHF from Public-Coin CRHF 18

5.1 On Oracle Separations 18

5.1.1 Black-Box Reductions 19

5.2 Separating Secret-Coin CRHF from Public-Coin CRHF 20

5.2.1 The Main Result of Part I 20

5.2.2 The Oracles F and G 21

5.2.3 Secret-Coin Collision-Resistant Hash Family Based on G 23

5.2.4 No Public-Coin Collision-Resistant Hash Family Based on G 24

6 Other Primitives 27

II Condit ional Computat ional Entropy 28

7 Background 29

vii

www.manaraa.com

8 Our Results 30

9 Definitions and Notation 33

10 Separating HILL Entropy from Yao Entropy 37

10.1 Separating HILL Entropy from Yao Entropy 37

10.2 Non-Interactive Zero Knowledge (NIZK) 37

10.3 The Construction 39

11 Randomness Extraction 43

11.1 Extracting from Conditional HILL Entropy 44

11.2 Extracting from Conditional Yao Entropy 45

11.3 Unconditional Extraction 50

12 Unpredictability Entropy 52

A Modifications to the Proof of [34] 55

B Unconditional HILL Entropy of (X, Z) 57

Bibliography 58

Curriculum Vitae 63

vin

www.manaraa.com

List of Abbreviations

CRHF collision resistant hash function

HILL Hastad, Impagliazzo, Levin and Luby

MD5 message digest algorithm 5

NIZK non-interactive zero knowledge

PPTM probabilistic polynomial-time Turing machine

SHA-1 secure hash algorithm 1

IX

www.manaraa.com

Introduction

Modern cryptography places a great deal of emphasis on definitions, because a precise def­

inition formalizes our intuition about a cryptographic primitive. This dissertation consists

of two parts, both demonstrating that a careful choice between two similar definitions is

important.

Part One is based on the paper "Finding Collisions on a Public Road, or Do Secure

Hash Functions Need Secret Coins?" that appeared in Crypto 2004, [28]. Part Two is based

on the paper "Conditional Computational Entropy, or Toward Separating Pseudoentropy

from Compressibility" that appeared in Eurocrypt 2007, [27].

Part I: Secret-Coin vs. Public-Coin

Collision-resistant Hash Function, or CRHF, is one of the earliest primitives of modern

cryptography, finding its first uses in digital signatures [45, 46] and Merkle trees [35, 36].

A hash function, of course, maps (potentially long) inputs to short outputs. Informally, a

hash function is collision-resistant if it is infeasible to find two inputs that map to the same

output. It was first formally defined by [10].

The first part of this dissertation demonstrates the importance of definitional precision

by examining a previously overlooked subtlety in denning CRHF. The subtlety lies in the

method by which the CRHF key is generated: namely, whether a trusted party needs to

perform key generation (the "secret-coin" variant defined in [10]), or whether any public

random string can be used as the key (the "public-coin" variant sometimes used in subse-

www.manaraa.com

2

quent work). Adding a new technique to the so-called black-box separation methodology,

we show that these two variants of CRHF, which were sometimes used interchangeably, are

actually distinct in general. This oversight has lead to problems, for example, in a proof

from [21].

We also show that these two variants are equivalent under certain conditions. In Chap­

ter 4 we study such conditions precisely; here we just remark that there are known examples

for both cases: a factoring-based construction shows the equivalence (see Chapter 4), while

a lattice-based construction shows the distinction (see [44, 33]).

Part II: Conditional Computational Entropy

The second part of this dissertation investigates two known definitions of entropy. The

most common definition, known as Shannon entropy and defined for a distribution X as

Exex — log2 Pr[x], is a measure of how much randomness, in terms of number of bits,

a distribution contains. Shannon has shown that this measure is equal to the shortest

compression length (i.e., the shortest expected number of bits to which elements of X can

be compressed) [54]. Thus there are two equivalent ways to define entropy.

Both of the above mentioned entropy definitions are in the information-theoretical set­

ting, meaning no computation constraints are considered. Cryptographers, however, are of­

ten interested in distributions that "appear" random to computationally-bounded observers

(for example, ciphertexts often have this property). In an attempt to quantify the amount

of this "computational" randomness, analogues of Shannon's notions of compressibility and

entropy have been proposed for the computationally-bounded setting: indistinguishability

based [25] (so-called "HILL entropy") and incompressibility based [3] (so-called "Yao en­

tropy"). Whether these two notions remain equivalent is an interesting open question, with

potential applications to pseudorandom generation and cryptographic primitives that rely

on it. We show that they can differ vastly in a common cryptographic setting: namely, Yao

^lack-box separation methodology was introduced by Impagliazzo and Rudich [32], and it is now a
widely-used tool to show how complex a cryptographic primitive is compared to others. See section 5.1 for
more details.

www.manaraa.com

3

entropy can far exceed HILL entropy in a common cryptographic setting.

An important application of the notion of computational entropy is to obtaining pseu­

dorandom bits from distributions. To this end, we need a tool called extractor. Extractors

were first defined by Nisan and Zuckerman [42] to extract random bits from distributions

with entropy, and it has been long known that they can be used to extract pseudorandom

bits from distributions with HILL entropy. Barak et al. [3] showed that certain type of ex­

tractors can be used to extract pseudorandom bits from distributions with Yao entropy. We

re-analyze a well-known extractor construction to show that it satisfies conditions required

by the [3] result. In fact, this extractor extracts almost all the computational entropy.

Applying this extractor to a distribution with higher Yao entropy (as described in previous

paragraph), we show how to extract more pseudorandom bits than possible using the more

commonly used HILL entropy.

www.manaraa.com

Part I

Secret-Coin vs. Public-Coin

www.manaraa.com

Chapter 1

Background

Collision-resistant (CR) hashing is one of the earliest primitives of modern cryptography,

finding its first uses in digital signatures [45, 46] and Merkle trees [35, 36]. A hash function,

of course, maps (potentially long) inputs to short outputs. Informally, a hash function is

collision-resistant if it is infeasible to find two inputs that map to the same output.

In practice, such hash functions were constructed to have variable-length inputs mapped

to fixed-length outputs. For example, Rabin's hash function [45] has the same output length

as a block cipher; MD5 [51] has 128-bit outputs; and SHA-1 [41] has 160-bit outputs.

However, it is easy to see there is no meaningful way to formalize the notion of collision-

resistance for a single fixed-output-length hash function. Indeed, at least half of the 2161

possible 161-bit inputs to SHA-1 [41] have collisions (because SHA-1 has 160-bit outputs).

Hence, an algorithm finding collisions for SHA-1 is quite simple: it just has, hardwired in

it, two 161-bit strings that collide.

Due to this simple observation, formal definitions of collision-resistant hashing (first

given by Damgard [10]) usually speak of collision-resistant function families (CRHFs).1 A

hash function family is collision-resistant if any adversary, given a function chosen randomly

from the family, is unable to output a collision for it.

JIt is possible to define a single hash function (with variable output-length; cf. previous paragraph)
instead of a collection of them. In this case, it can be collision-resistant only against a uniform adversary.

www.manaraa.com

6

How to Choose from a Family? Most definitions of CRHFs do not dwell on the issue

of how a hash function is to be chosen from a family. In the first part of this thesis, we

point out that this aspect of the definition is crucial. Indeed, in any application of collision-

resistant hashing, some party P must choose a function from the family by flipping some

random coins to produce the function description. As we demonstrate, it is important to

distinguish between two cases. In the public-coin case these random coins can be revealed

as part of the function description. In the secret-coin case, on the other hand, knowledge

of the random coins may allow one to find collisions, and thus P must keep the coins secret

after the description is produced. (For examples of both cases, see Chapter 3.) We note

that the original definition of [10] is secret-coin, and that the secret-coin definition is more

general: clearly, a public-coin CRHF will also work if one chooses to keep the coins secret.

www.manaraa.com

Chapter 2

Motivation and Our Results

2.1 Motivation

Initial Observation The distinction between public-coin and secret-coin CRHFs is com­

monly overlooked. Some works modify the secret-coin definition of [10] to a public-coin

definition, without explicitly mentioning the change (e.g., [4, 55]). Some definitions (e.g.,

[38]) are ambiguous on this point. This state of affairs leads to confusion and potential

problems, as discussed in three examples below.

Example 1. Some applications use the wrong definition of CRHF. For instance, in

Zero-Knowledge Sets of Micali, Rabin and Kilian [37], the prover uses a hash function

to commit to a set. The hash function is chosen via a shared random string, which is

necessary because the prover cannot be trusted to choose his own hash function (since

a dishonest prover could benefit from finding collisions), and interaction with the

verifier is not allowed at the commit stage (indeed, the prover does not yet know who

the verifier(s) will be). In such a setting, one cannot use secret-coin CRHFs (however,

in an apparent oversight, [37] defines only secret-coin CRHFs). A clear distinction

between public-coin and secret-coin CRHFs would make it easier to precisely state

the assumptions needed in such protocols.

Example 2. The result of Simon [55] seems to claim less than the proof implies.

Namely, the [55] theorem that one-way permutations are unlikely to imply CRHFs is

www.manaraa.com

8

stated only for public-coin CRHFs, because that is the definition [55] uses. It appears

to hold also for secret-coin CRHFs, but this requires re-examining the proof. Such

re-examination could be avoided had the definitional confusion been resolved.

Example 3. The original result of Goldwasser and Kalai [21] on the security of

the Fiat-Shamir transform without random oracles has a gap due to the different

notions of CRHF (the gap was subsequently closed, see below). Essentially, the work

first shows that if no secret-coin CRHFs exist, then the Fiat-Shamir transform can

never work. It then proceeds to show, in a sophisticated argument, that if public-coin

CRHFs exist, then it is possible to construct a secure identification scheme for which

the Fiat-Shamir transform always results in an insecure signature scheme. This gap

in the result would be more apparent with proper definitions.

Let us elaborate on the third example, as it was the motivating example for our work.

It is not obvious how to modify the [21] proof to cover the case when secret-coin CRHFs

exist, but public-coin ones do not. Very recently, Goldwasser and Kalai [20] closed this gap

by modifying the identification scheme of the second case to show that the Fiat-Shamir

transform is insecure if secret-coin (rather than public-coin) CRHFs exist. Briefly, the

modification is to let the honest prover choose the hash function during key generation

(instead of the public-coin Fiat-Shamir verifier choosing it during the interaction, as in the

earlier version).

Despite the quick resolution of this particular gap, it and other examples above demon­

strate the importance of distinguishing between the two types of collision-resistant hashing.

Of course, it is conceivable that the two types are equivalent, and the distinction between

them is without a difference. We therefore set out to discover whether the distinction be­

tween public-coin and secret-coin hashing is real, i.e., whether it is possible that public-coin

CRHFs do not exist, but secret-coin CRHFs do.

www.manaraa.com

9

2.2 Our Results

Recall that public-coin hashing trivially implies secret-coin hashing. We prove the following

results:

1. Dense1 secret-coin CRHFs imply public-coin CRHFs; but

2. There is no black-box reduction from secret-coin CRHFs to public-coin CRHFs.

The first result is quite simple. The second, which is more involved, is obtained by con­

structing oracles that separate secret-coin CRHFs from public-coin CRHFs. Our technique

for this oracle separation is different from previous separations (such as [32, 55, 17, 18, 9]),

as explained below. We note that our second result, as most oracle separations, applies

only to uniform adversaries (a notable exception to this is [16]).

Our results suggest that a gap between secret-coin and public-coin CRHFs exists, but

only if no dense secret-coin CRHFs exist. They highlight the importance of distinguishing

between the two definitions of CRHFs.

In addition to these main results, Chapter 6 addresses secret vs. public coins in other

cryptographic primitives.

1A CRHF is dense if a noticeable subset of all keys of a particular length is secure; see Chapter 4.

www.manaraa.com

Chapter 3

Definitions and Notat ion

Examples Before we define public-coin and secret-coin hashing formally, consider the

following two example hash function families. The first one, keyed by a prime p with a

large prime q\(p— 1), and two elements g,h €E Z* of order q, computes Hp^^(m) — gmihm2,

where mi and m% are two halves of m (here we think of m as an element of Zq x Zq).
1 The

second one, keyed by a product n of two primes p\ = 3 (mod 8), and P2 = 7 (mod 8) and

a value r 6 Z*, computes Hn^r(m) — 4 m r 2 m mod n.2

The first hash function family is secure as long as discrete logarithm is hard. Thus, if

one publishes the random coins used to generate p, g and h, the hash function remain secure

(as long as the generation algorithm doesn't do anything esoteric, such as computing h as

a random power of g). On the other hand, the second hash function family is secure based

on factoring, and is entirely insecure if the factors of n are known. Thus, publishing the

random coins used to generate p\ and P2 renders the hash function insecure, and the coins

must be kept secret.3

We say that a function is negligible if it vanishes faster than any inverse polynomial. We

let PPTM stand for a probabilistic polynomial-time Turing machine. We use M ? to denote

'This family is derived from Pedersen commitments [43].
2This is essentially the construction of [10] based on the claw-free permutations of [23].
3It should be noted, of course, whether it is secure to publish the coins depends not only on the family,

but also on the key generating algorithm itself: indeed, the first family can be made insecure if the coins
are used to generate h as a power of g, rather than pick h directly. Likewise, the second family could be
made secure if it were possible to generate n "directly," without revealing p\ and p2 (we are not aware of an
algorithm to do so, however).

www.manaraa.com

11

an oracle Turing machine, and MA to denote M instantiated with oracle A.

Let k be the security parameter, and let I be a (length) function that does not expand

or shrink its input more than a polynomial amount. Below we define two kinds of CRHFs:

namely, secret-coin and public-coin. The secret-coin CRHFs definition is originally due to

Damgard [10], and the definition here is adapted from [52].

Definition 1. A Secret-Coin Collision Resistant Hash Family is a collection of functions

{hijiel for some index set I C {0,1}*, where hi : {0,1}I1I+1 —> {0, l} '1 ' , and

1. There is a PPTM GEN, called the generating algorithm, so that GEN(lfe) G {0, l}^ f c) D

I.

2. There exists a PPTM EVA, called the function evaluation algorithm, so that Mi € I

and\fxe {0,1}W+1, EVA(i.x) = ^ (x) .

3. For all PPTM ADV, the probability that ADV(z) outputs a pair (x, y) such that hi{x) =

hi(y) is negligible in k, where the probability is taken over the random choices of GEN

in generating i and the random choices of ADV.

Definition 2. A Public-Coin Collision Resistant Hash Family is a collection of functions

{MlG{o,i}*, where h% : {0,1}^+ 1 -» {0,1}I'I, and

1. A PPTM GEN on input lk outputs a uniformly distributed string i of length l(k).

2. There exists a PPTM EVA, called the function evaluation algorithm, so that Vz £

{0,1}* andVx€{0, l}*(M+ 1 , EVA(i,x) = h^x).

3. For all PPTM ADV, the probability that ADV(i) outputs a pair (x, y) such that hi(x) =

hi(y) is negligible in k, where the probability is taken over the random choices of GEN

in generating i and the random choices of ADV.

A pair (x, y) such that hi(x) = hi(y) is called a collision for hi.

www.manaraa.com

12

Remarks The generating algorithm in the public-coin case is trivially satisfied. We keep it

here for comparison with the secret-coin case. Note that in both cases, on security parameter

k, GEN outputs a function that maps {0, l}^ fc)+1 to {0, \}^k\ This may seem restrictive as

the hash functions only compress one bit. However, it is easy to see that hi can be extended

to {0, l } n for any n, and remain collision-resistant with t{k)-h\t outputs, by the following

construction: h*{x) = hi{... hi(hi(hi(xiox2o.. .oxe^+1)ox^k)+2)ox^k)+3). ..oxn), where

Xj denotes the j - th bit of the input string x.

www.manaraa.com

Chapter 4

Dense Secret-Coin C R H F implies
Public-Coin C R H F

The notion of dense public-key cryptosystems was introduced by De Santis and Persiano in

[11]. By "dense" they mean that a uniformly distributed string, with some noticeable prob­

ability, is a secure public key. We adapt the notion of denseness in public-key cryptosystems

from [11] to the context of CRHFs. Informally, a d-dense secret-coin CRHF is a secret-coin

CRHF with the following additional property: if we pick a k-bit string at random, then we

have probability at least k~d of picking an index i for a collision-resistant function.1 Note

that, for example, the factoring-based secret-coin CRHF from Chapter 3 is dense, because

the proportion of fc-bit integers that are products of two equal-length primes is Q(k~2).

More formally, by hi being collision-resistant, we mean with probability k~d, i is a

"typical" output of GEN. We will use the notion of domination to define typical outputs.

Below we cite the definition by Dedic et al. [12].

Definition 3 (^-Domination, [12]). Let B and C be distributions on the same set S, and

g a real-valued function. We say that C g-dominates B i/VT C S, Prc[T] > g(PrB[T]).

A nice feature about domination is that it preserves over distribution products. For­

mally,

1 Confusingly, sometimes the term dense is used to denote a function family where each function has a
dense domain, e.g., [24]. This is unrelated to our use of the term.

www.manaraa.com

14

Lemma 1 ([12]). If C g-dommates B for a convex function g, then for any distribution D

on a set S', D x C g-dominates D x B.

With the notion of domination, we are now ready to define dense secret-coin collision-

resistant hash fanzine families. Throughout this chapter, let g be a convex polynomial.

Definition 4. A secret-coin CRHF is d-dense if for all k there exists a set Sk in the range

o/GEN(lfc) such that GEN(lfc)|5fc g-dominates U^\sk, where \s means the distribution is

conditioned on set S. Furthermore, Pri_j/„fc.[i € Sk] > k~d, and Prĵ _GEN(ifc)[^ e Sk] >

k~d for some integer d!.

As mentioned in the beginning of the chapter, the factoring-based secret-coin CRHF

from Chapter 3 is dense according to our definition. To see this, let S be the set of product

of two equal-length primes. The weight of S in the range of GEN is close to one,2 and

the weie ht of S in {0,1}W is &(£(k)-2). GEN(lfc)|Sfc ^-dominates Ue{k)\sk, where g is the

identity function, because both of these conditional distributions are uniform.

Constructing public-coin CRHF from dense secret-coin CRHF Given a d-dense

secret-coin CRHF, if we pick fcd+1 strings of length £(k) at random, then with high proba­

bility, at least one of them defines a collision-resistant hash function.

Hence, we can build a public-coin CRHF from such dense secret-coin CRHF as follows.

1. Generate kd+l random ^(fc)-bit strings i\, i%, • •., i^d+i, independently. These strings

specify kd+1 hash functions h^,hi2,.. .hi d+1 in the secret-coin CRHF (strictly speak­

ing, some strings may not define functions at all, because they are not produced by

GEN; however, simply define hi(x) = 0e^ if EVA(i,x) does not produce an output of

length k in the requisite number of steps).

2. Through the construction described in the end of Chapter 3, extend the domain of

each of these function to binary strings of length £(k)kd+1 + 1. Let the resulting

func t ions b e h\, h,2, •••, hkd+i •

GEN has to have real bad coins in order to fail to generate such a product.

www.manaraa.com

15

3. On an input x of length £(k)kd+1 + 1, output the concatenation of h\(x), h,2(x), ...,

hkd+i(x). Call this function h*.

The resulting hash h* maps binary strings of length £(k)kd+1 + 1 to binary strings of length

£(k)kd+1, and is collision-resistant because at least one of hi, hi, • • • > hkd+i is a "typical"

output of GEN.

The above discussion leads to the following theorem.

Theorem 2. The existence of dense secret-coin CRHF implies the existence of public-coin

CRHF.

Proof. Assume for contradiction that the resulting public-coin hash family is not collision-

resistant. That is, there exists a PPTM adversary A who is able to find a collision for the

public-coin hash family. Namely,

P r [A outputs collision for h*] = e
h* ,A's coins

and e is not negligible.

By definition of d-dense secret-coin CRHF, there exists a set S in the range of

GEN with weight at least l/kd in { 0 , 1 } ' ^ , and GEN(lfe)|s ^-dominates U^k)\s- So

the probability that none of the i hits S is (1 - l/kd)kd+l < e~k < 1/2*. Because

Pr[A outputs collision for h*] is equal to Pr[A outputs collision for h* | 3i € £]-Pr[3i € S]

+ Pr[A outputs collision for h* | jBi E S] • Pr[/Qi G 5], we have

Pr[A outputs collision for h* | 3i € S] > e - l/2fc.

Note that choosing an h* conditioned on the event that at least one of i is in 5" is

equivalent to choosing kd+l random strings of length £(k) such that at least one of them

is in S (let's call the uniform distribution on such strings D), and a random j G S, then

replacing the first hi for which i G S by hj. Let the resulting hash function be h^\ to

select h*-1', we choose random element from D and another one from U^k)\S. Even though

www.manaraa.com

16

choosing h^1' in this manner instead of simply choosing h* may seem strange and inefficient,

it makes the probability computation easier. We therefore have

P r [A outputs collision for h{l)] > e - l/2fc ,
DxCxUe(k)\S

where C is the distribution of coins needed by A.

Now given a function key a, selected secretly from the dense secret-coin hash family (i.e.,

a <— GEN(lfc)), we use A to construct B that finds a collision for a as follows. Generate

kd+l uniformly random keys i\,... ,ikd+i of length £(k) each. Output "FAIL" if none of

these keys is in S; otherwise, replace the first i G S by a, then give all kd+l keys to A.

If A succeeds in funding a collision, then it is a collision for all of the fcd+1keys, and, in

particular, for a, so B also succeeds in finding a collision. We now need to analyze A's

probability of success.

Let the hash function that is given to A be h^2\ Note that the success or failure of B

depend on a choice of kd+1 uniformly random strings, the coins of A (we denote them by

C), and a generated by GEN. Since GEN(lfc)|5 ^-dominates U^k)\S, by Lemma 1 we have

P r [B outputs collision for a] >
t /^ f e | 1 xCxGEN(l '=)

> P r [B outputs collision for a \ 3i € S] • P r [3i 6 S]
l^fxCxGENd*) Uffi1

> P r [A outputs collision for h{2)] • (1 - l/2fc)
DxCxGEN(l f c)

> P r [A outputs collision for h{2) I a G S] • P r [a G S] • (1 - l/2fc)
DxCxGEN(lfc) GEN(lfc)

> P r [A outputs collision for h{2)] • l/kd' • (1 - l/2/c)
DxCxGEN(lfe) |S

> g (P r \A outputs collision for h{2)]) • \lkd' • (1 - l/2fc)
- y\DxCxUew\S[^ Jy

> < ? (e - l / 2 f c) - l / f c d ' - (l - l / 2 f c) ,

which is a contradiction because this probability is not negligible. One last issue is that B

may not know where the first i G S is (to be replaced by a); in fact B may not even know

www.manaraa.com

17

if there exists such an i. But B can simply try a at every location, and this will increase

the running time by at most kd+l times. •

www.manaraa.com

Chapter 5

Separating Secret-Coin CRHF
from Public-Coin CRHF

5.1 On Oracle Separations

Usually when one constructs a cryptographic primitive P (e.g., a pseudorandom genera­

tor [7]) out of another cryptographic primitive Q (e.g., a one-way permutation), P uses Q

as a subroutine, oblivious to how Q implemented. The security proof for P usually con­

structs an adversary for Q using any adversary for P as a subroutine. This is known as a

"black-box reduction from P to Q."

Note that to show that no general reduction from P to Q exists requires proving that

Q does not exist, which is impossible given the current state of knowledge. However, it is

often possible to show that no black-box reduction from P to Q exists; this is important

because most cryptographic reductions are black-box.

The first such statement in cryptography is due to Impagliazzo and Rudich [32]. Specifi­

cally, they constructed an oracle relative to which key agreement does not exist, but one-way

permutations do. This means that any construction of key agreement from one-way per­

mutations does not relativize (i.e., does not hold relative to an oracle). Hence no black-box

reduction from key agreement to one-way permutations is possible, because black-box re­

ductions relativize.

The result of [32] was followed by other results about "no black-box reduction from P

to Q exists," for a variety of primitives P and Q (e.g., [55, 17, 18, 9]). Most of them, except

www.manaraa.com

19

[18], actually proved the slightly stronger statement that no relativizing reduction from P

to Q exists, by using the technique of constructing an oracle.

Our proof differs from most others in that it directly proves that no black-box reduction

exists, without proving that no relativizing reduction exists. We do so by constructing

different oracles for the construction of P from Q and for the security reduction from

adversary for P to adversary for Q. This proof technique seems more powerful than the

one restricted to a single oracle, although it proves a slightly weaker result. The weaker

result is still interesting, however, because it still rules out the most common method of

cryptographic reduction. Moreover, the stronger proof technique may yield separations that

have not been achievable before.

We note that [18] also directly prove that no black-box reduction exists, without proving

that no relativizing reduction exists. Our approach is different from [18], whose approach

is to show that for every reduction, there is an oracle relative to which this reduction fails.

For a detailed discussion on black-box reductions, see [48]. All reductions in this paper

are what they refer to as fully black-box reductions.

5.1.1 Black-Box Reductions

Impagliazzo and Rudich [32] provided an informal definition of black-box reductions, and

Gertner et al. [17] formalized it. We recall their formalization.

Definition 5. A black-box reduction from primitive P to primitive Q consists of two oracle

PPTMs M and AQ satisfying the following two conditions:

If Q can be implemented, so can P: V7V (not necessarily PPTM) implementing Q,

MN implements P; and

If P is broken, so is Q: \/Ap (not necessarily PPTM) breaking MN (as an implementa­

tion of P), AQP' breaks N (as an implementation of Q).

The first condition is only a functional requirement; i.e., the term "implement" says nothing

about security, but merely says an algorithm satisfies the syntax of the primitive.

www.manaraa.com

20

5.2 Separating Secret-Coin CRHF from Public-Coin CRHF

5.2.1 The Main Result of Part I

Theorem 3. There is no black-box reduction from public-coin CRHF to secret-coin CRHF.

Proof. The following proposition is at the heart of our approach: it shows that it is sufficient

to construct different oracles F and G, such that G is used in the implementations, while F

and G are used for the adversaries. This is in contrast to the single-oracle approach usually

taken to prove black-box separations.

Proposition 1. To show that there is no black-box reduction from public-coin collision

resistant hashing (P) to secret-coin collision resistant hashing (Q), it suffices to construct

two oracles F and G such that,

1. there is an oracle PPTM L such that N'' — LG implements secret-coin hashing;

2. for all oracle PPTM M, if MG implements public-coin hashing, then there exists a

probabilistic polynomial time adversary A such that Ap = A finds a collision for M ,

3. there is no oracle PPTM B such that J3F'G finds a collision for N.

Proof. To show that there is no black-box reduction from public-coin collision resistant

hashing (P) to secret-coin collision resistant hashing (Q), we need to negate the definition

of black-box reduction from Section 2; i.e., we need to show that for every oracle PPTMs

M and AQ,

Q can be implemented: 3N that implements Q, and if MN implements P, then

P can be broken, without breaking Q: 3Ap that breaks MN (as an implementation

of P), while AQP' does not break N (as an implementation of Q).

Recall that "implement" here has only functional meaning.

The first condition clearly implies that Q can be implemented. The second condition

also clearly implies that P can be broken: one simply observes that MN — ML , and L

www.manaraa.com

21

is a PPTM; hence, writing MG is equivalent to writing M . The third condition implies

that P can be broken without breaking Q, essentially because Q can never be broken. More

precisely, the third condition is actually stronger than what we need: all we need is that

for each AQ, there is Ap that breaks MN, while AQP' does not break N. Instead, we will

show that a single Ap essentially works for all AQ: namely, Ap = AF, for a fixed oracle F

and a polynomial-time A. Such Ap breaks MN; however, as condition 3 in the proposition

statement implies, AQP' will be unable to break N, because AQP' = AQ ' = BF,G for

some oracle PPTM B. D

Remarks Note that if the implementation has access to not only G but also F, it becomes

the usual single-oracle separation. The reason why we do not give the implementation access

to F is to avoid "self-referencing" when denning F. To see this, note that F is the "collision

finder" and is defined according to the oracles that the implementation has access to.1

The rest of this section is devoted to constructing such F and G and proving that they

work.

5.2.2 The Oracles F and G

In constructing F and G, we will use the Borel-Cantelli Lemma (see, e.g., [2]), which states

that if the sum of the probabilities of a sequence of events converges, then the probability

that infinitely many of these events happen is zero. Formally,

Lemma 4 (Borel-Cantelli Lemma). Let B\,B2,-.- be a sequence of events on the same

probability space. Then YJ™=\ P r[#n] < oo implies P r [/ \ ^ = 1 \Jn>k Bn] = 0.

We first construct "random" F (collision-finder) and G (secret-coin hash), and then use

the above lemma to show that at least one pair of F and G works.

Intuitively, we want F to break any public-coin hashing but not break some secret-

coin hashing. More precisely, F will find a collision if it is supplied with the coins of the

generating algorithm and will refuse to do so without the coins.

'Similar concern occurs in [55], where constructing the collision-finder requires more careful design.

www.manaraa.com

22

• G consists of two collections of functions {gj}igN and {/ia}ae{o,i}*' where each gi is a

random function from {0, l} 1 to {0,1}2%. We will call a binary string valid if it is in

the range of g, and invalid if not. Each ha is a random function from {0, l}l a '+ 1 to

{0,1}IQI if a is valid, and is a constant function 0'a' if a is invalid. We will call queries

to ha valid (resp. invalid) if a is valid (resp. invalid).

• F takes a deterministic oracle machine M ? and l/ as input, and outputs a collision of

length £ + 1 for MG if MG satisfies the following conditions.

1. MG maps {0,1}£+1 to {0,1}'.

2. MG never queries ha for some a not obtained by previously querying g. I.e.,

whenever MG queries hQ, this a is the answer to some g-query that MG has

previously asked.

When both conditions hold, F picks a random x from {0,1} '+ 1 that has a collision,

then a random y (^ x) that collides to x (i.e., MG(x) = MG(y)), and outputs (x,y).

Otherwise F outputs ±.

Observe that when F outputs (x,y), not only x, but also y is uniformly distributed

over all points that have a collision. Indeed, let C be the total number of points that

have a collision, and suppose y has c collisions (x\,X2, • • •, xc): then Pr[y is chosen] =

E i= i l /cPr[xj is chosen] = 1/c • (c/C) = 1/C.

Remarks The reason for g being length-doubling is to have a "sparse" function family.

More specifically, it should be hard to get a value in the range of g without applying it.

As in [55], there are various ways of constructing F (the collision-finding oracle): one

can choose a random pair that collides, or a random x then a random y (possibly equal to

x) that collides to x. The second construction has the advantage, in analysis, that both x

and y are uniformly distributed but does not always give a "correct" collision, like the first

one does. Our F has both properties.

www.manaraa.com

23

5.2.3 Secret-Coin Coll is ion-Resistant Hash Family Based on G

In this section we construct a secret-coin CRHF. The construction is straightforward given

the oracle G: the generating algorithm uses g and the hashing uses h. More precisely, on

input lk the generating algorithm picks a random seed r € {0, l}fc and outputs a = <?fc(r).

The hash function is ha. Note that the adversary A (who is trying to find a collision) is

given only a but not r. We will show that for measure one of oracles F and G, the probability

over r and A's coin tosses that A finds a collision for ha is negligible. Recall that A has

access to both F and G.

Define D as the event that A outputs a collision for ha in the following experiment:

r <-fl {0, l} fc, a +- gk(r), (x,y) <- AF>G(a).

And in the same experiment, define B as the event that during its computation, A queries

F on M', where M • is some deterministic oracle machine that queries its oracle on a

preimage of a under g^ (i.e., intuitively, M' has r hardwired in it). Suppose A's running

time is bounded by kc for some constant c. The probability that B happens is at most

the probability of inverting the random function g^. If a has a unique preimage, this is at

most kc/2k; the probability that a has two or more preimages is at most l/2fc (because it's

the probability that r collides with another value under <?&); hence Pr[5] < (kc + l)/2fc.

The probability that D happens conditioned on -<B is at most the probability of finding

a collision for random function ha, which is bounded by k2c/22k. Recall that A can be

randomized. We thus have

P r [D] = Pr[B]-Pr[L>|B] + Pr[-iB]-Pr[Z>|-.5]
F,C,r,A

< PT[B] + PT[D\-^B]

< (kc + l)/2k + k2c/22k

< 2kc/2k.

By the Markov inequality, Prf^[PrrtA[D] > k2 • 2kc/2k] < 1/k2. Since J2k V*2 c o n "

www.manaraa.com

24

verges, the Borel-Cantelli lemma implies that for only measure zero of F and G, can there be

infinitely many k for which event D happens with probability (over r and A's coins) greater

than or equal to fcc+2/2fc_1. This implies that for measure one of F and G, event D happens

with probability (over r and A's coins) smaller than hc+2/2k~l (a negligible function) for

all large enough k. There are only countably many adversaries A, so we have the following

lemma.

Lemma 5. For measure one of F and G, there is a CRHF using G, which is secure against

adversaries using G and F.

5.2.4 No Public-Coin Collision-Resistant Hash Family Based on G

In this section we show that any implementation of public-coin hashing using oracle G

cannot be collision-resistant against adversaries with oracle access to both F and G.2 More

precisely, let r G {0, l}^fe) be the public randomness used by the generating algorithm for

a family of hash functions, and let M ? be the evaluation algorithm. I.e., MG(r,-) is the

hash function specified by r. Assume that Mf(-) = MG(r, •) maps {0, 1}<W+1 to {0, l}^k\

where £ is a function that does not expand or shrink the input by more than a polynomial

amount. We will show how to find x and y of length £(k) + 1 such that MG(x) = MG(y).

An immediate attempt is to query F(Mj, li(-k^), but notice that MG may query ha for

arbitrary a,3 which prevents F from finding a collision for us. However, these a are likely

to be invalid, and hence oracle answers to these queries are likely to be 0'Q'. So we can

construct a machine Mr that behaves "similar" to Mr but only after getting a from g does

it query ha. And instead of finding collision for MG, we find collision for MG, which can

be done by simply querying F(Mj, l^fc^).,

Suppose the running time of Mf is bounded by kc for some constant c > 1. Before

simulating MG, MG queries g on all inputs of length smaller than or equal to 4c log k. This

takes 2fc4c steps. Now MG simulates MG step by step, except for queries to ha. If a is

the answer to one of the queries Mf already asked of G (either before the beginning of the

In fact, only F is needed to And a collision.
3In particular, those a not obtained by previously querying g.

www.manaraa.com

25

simulation or when simulating MG), then MG actually queries ha. Else it returns 0'a' as

the answer to MG without querying ha.

Now fix r and x. For every M ? the probability, over random G, that Mr
G(i) ^ Mr

G(x)

is at most the probability, over G, that MG queries ha for some valid a of length greater

than 8c log k without receiving it from g.A Consider the very first time that MG makes such

a "long" valid query. Let ng be the number of queries to g on inputs longer than 4clogfc,

and rih, be the number of invalid queries to h prior to this point. Then the probability in

question is upper bounded by kc • —ks?ln
 nh» which is at most l/k3c. For every fixed G and

r, call an x "bad" if AfG(x) ^ Mr
G(x). We have

E[Pr[x is bad]] = Pr[x is bad] < l/k3c.
G x G,x

Next, notice that there are at most half of x that have no collisions, and F would pick

its answer (x^, yp), uniformly, from those points that have a collision. So for a fixed G, the

probability over F that Xf is bad is at most twice the probability over random x € {0, l}^ fc)+1

that x is bad. Also recall that the distribution of yj= is the same as xp. So for every M ' ,

EfPrfat least one of (xp.yp) is bad]] < 4 • EfPrfx is bad]].
G F G

 x

If none of (xp,yp) is bad, this pair would be a collision not only for MG but also for MG .

We have

P r [(xf, t/F) is not a collision of MG] < 4 P r [x is bad] < 4//c3c,
F,G,r G,x,r

then

Pr[Pr[{xF,yF) is not a collision of MG] > A/kc) < l/k2c.
F,G r

Since Ylk V^ 2 c converges, the Borel-Cantelli lemma implies that for only measure zero

of F and G, can we have Prr[(xp,yF) is not a collision of MG] > A/kc for infinitely many k.

In other words, for measure one of F and G, Pr r[(xp, J/F) is a collision of MG] > A/kc for all

Recall that g is length-doubling.

www.manaraa.com

26

large enough k. There are only countably many oracle machines M ' , each of which can be

collision resistant for only measure zero of F and G. We conclude the following.

Lemma 6. For measure one of F and G, any implementation of public-coin hash function

families using G cannot be collision-resistant against adversaries using F.

This concludes the proof of Theorem 3. •

www.manaraa.com

Chapter 6

Other Primitives

Public Coins vs. Secret Coins For Other Primitives Perhaps the lack of attention

in the literature to the distinction between secret- and public-coin primitives is due, in part,

to the fact that this distinction is often not meaningful.

For example, for one-way function families, these two notions are equivalent, because

a secret-coin one-way function family implies a single one-way function (which trivially

implies a public-coin one-way function family). Indeed, take the generating algorithm g

and evaluation algorithm / and define F(r,x) = {g(r), fg(r){
x))\ this is one-way because an

adversary who can come up with (r',x') such that g(r) = g{r') and fg(r')(x') = fg(r){
x) can

be directly used to invert fg(r){x), since fg(r){x') — fg(r')(
x>) — fg(r)ix)-

On the other hand, for trapdoor permutations (and public-key schemes), the notion of

public-coin generation is meaningless: indeed the trapdoor (or the secret key) must be kept

secret.

However, it seems that this distinction is interesting for some primitives in addition

to collision-resistant hash functions. The relationships between public-coin and secret-coin

versions of one-way permutation families and claw-free permutation families are unknown.1

In particular, claw-free permutations are related to collision-resistant hashing [10, 52], which

suggests that the distinction for claw-free permutations is related to the distinction for

CRHFs.

1We believe that the same construction of F and G (up to slight modifications) separates public-coin and
secret-coin one-way permutation families.

www.manaraa.com

Part II

Conditional Computational
Entropy

www.manaraa.com

Chapter 7

Background

The various information-theoretic definitions of entropy measure the amount of random­

ness a probability distribution has. As cryptography is able to produce distributions that

appear, for computationally bounded observers, to have more randomness than they really

do, various notions of computational entropy attempt to quantify this appearance of en­

tropy. The commonly used HILL entropy (so named after [25]) says that a distribution has

computational entropy k if it is indistinguishable (in polynomial time) from a distribution

that has information-theoretic entropy k.1 The so-called Yao entropy [61, 3], says that a

distribution has computational entropy k if it cannot be efficiently compressed to below k

bits and then efficiently decompressed. Other computational notions of entropy have been

considered as well [3, 25].

Computational notions of entropy are useful, in particular, for extracting strings that are

pseudorandom (i.e., look uniform to computationally bounded observers) from distributions

that appear to have entropy. Indeed, generation of pseudorandom bits is the very purpose

of computational entropy defined in [25], and its variant considered in [15]. Pseudorandom

bits have many uses, for example, as keys in cryptographic applications.

The specific notion of information-theoretic entropy depends.on the desired application; for the purposes
of this paper, we will use min-entropy, defined in Chapter 9.

www.manaraa.com

Chapter 8

Our Results

The adversary in cryptographic applications (or, more generally, an observer) often possesses

information related to the distribution whose entropy is being measured. For example, in the

case of Diffie-Hellman key agreement [13] the adversary has gx and gy, and the interesting

question is the amount of computational entropy of gxy. Thus, the entropy of a distribution

for a particular observer (and thus the pseudorandomness of the extracted strings) depends

on what other information the observer possesses. Because notions of computational entropy

necessarily refer to computationally-bounded machines (e.g., the distinguisher for the HILL

entropy or the compressor and decompressor for the Yao entropy), they must also consider

the information available to these machines. This has sometimes been done implicitly (e.g.,

in [15]); however, most commonly used definitions do not do so explicitly.

In this work, we explicitly put forward notions of conditional computational entropy.

This allows us to:

1. Separate conditional Yao entropy from conditional HILL entropy by demonstrating

a joint distribution (X, Z) such that X has high Yao entropy but low HILL entropy

when conditioned on Z.

2. Demonstrate (to the best of our knowledge, first) application of Yao entropy by ex­

tracting more pseudorandom bits from a distribution using Yao-entropy-based tech­

niques than seems possible from HILL-entropy-based techniques.

www.manaraa.com

31

3. Define a new, natural notion of unpredictability entropy, which can be used, in par­

ticular, to talk about the entropy of a value that is unique, such as gxy where gx and

gy are known to the observer, and possibly even verifiable, such as the preimage x of

a one-way permutation / , where y = f(x) is known to the observer.

HILL-Yao Separation. The first contribution (Section 10.1) can be seen as making

progress toward the open question of whether Yao entropy implies HILL entropy, attributed

in [59] to Impagliazzo [31] (the converse is known to be true: HILL entropy implies Yao

entropy, because compressibility implies distinguishability). Wee [60] showed that Yao

entropy does not imply HILL entropy in the presence of a random oracle and a membership

testing oracle. Our separation of conditional Yao entropy from conditional HILL entropy

can be seen as an improvement of the result of [60]: it shows that Yao entropy does not

imply HILL entropy in the presence of a (short) random string, because the distribution

Z on which X is conditioned is simply the uniform distribution on strings of polynomial

length. The separation holds under the quadratic residuosity assumption.

Randomness Extraction. Usually, pseudorandomness extraction is analyzed via HILL

entropy, because distributions with HILL entropy are indistinguishable from distributions

with the same statistical entropy, and we have tools (namely, randomness extractors [42]) to

obtain uniform strings from the latter. Tools are also available to extract from Yao entropy:

namely, extractors with a special reconstruction property [3]. Our second contribution

(Section 11.3) is to show that considering the Yao entropy and applying a reconstructive

extractor can yield many more pseudorandom bits than the traditional analysis, because,

according to our first result, Yao entropy can be much higher than HILL entropy. This

appears to be the first application of Yao entropy, and also demonstrates the special power

of reconstructive extractors.

It is worth mentioning that while our separation of entropies is conditional, the ex­

traction result holds even for the traditional (unconditional) notion of pseudorandomness.

www.manaraa.com

32

The analysis of pseudorandomness of the resulting string, however, relies on the notion of

conditional entropy, thus demonstrating that it can be a useful tool even in the analysis of

pseudorandomness of unconditional distributions.

Unpredictability Entropy. Unpredictability entropy is a natural formalization of a pre­

viously nameless notion that was implicitly used in multiple works. Our definition essentially

says that if some value cannot be predicted from other information with probability higher

than 2~k, then it has entropy k when conditioned on that information. For example, when a

one-way permutation / is hard to invert with probability higher than 2_fc, then conditioned

on f(x), the value x has entropy k. The use of conditional entropy is what makes this

definition meaningful for cryptographic applications.

We demonstrate that almost k pseudorandom bits can be extracted from distributions

with unpredictability entropy k, by showing that unpredictability entropy implies condi­

tional Yao entropy, to which reconstruction extractors can be applied. Thus, unpredictabil­

ity entropy provides a simple language that allows, in particular, known results on hardcore

bits of one-way functions to be stated more generally.

We also prove other (fairly straightforward) relations between unpredictability entropy

and HILL and Yao conditional entropies.

www.manaraa.com

Chapter 9

Definitions and Notat ion

In this section we recall the HILL and Yao definitions of computational entropy (or pseu-

doentropy) and provide the new, conditional definitions.

Notation. We will use n for the length parameter; our distributions will be on strings of

length polynomial in n. We will use s as the circuit size parameter (or running time bound

when dealing with Turing machines instead of circuits). To denote a value x sampled from

a distribution X, we write x <— X. We denote by M{X) the probability distribution on

the outputs of a Turing machine M, taken over the coin tosses (if any) of M and the

random choice of the input x according to the distribution X. We use Un to denote the

uniform distribution on {0,1}". For a joint distribution (X, Z), we write Xz to denote the

conditional distribution of X when Z = z\ conversely, given a collection of distributions Xz

and a distribution Z, we use {X, Z) to denote the joint distribution given by Pr[(X, Z) =

{x, z)] = Pr[Z = z] P r p G = x\.

We may describe more complicated distributions by describing the sampling process

and then the sampled outcome. For example, {a <— X;b <— X : (a, b)} denotes two inde­

pendent samples from X, while {a <— X : (a,M(a,Y))} denotes the distribution obtained

by sampling X to get a, sampling Y to get b, running M(a, b) to get c, and outputting

(o,c).

The statistical distance between two distributions X and V, denoted by d i s t (X, Y),

is defined as maxT | Pr[T(X) = 1] - Pr[T(Y) = 1]| where T is any test (function). (This

www.manaraa.com

34

is equivalent to the commonly seen d i s t (X, Y) = ^ ^ a |P r [X = a] — Pr[Y = a]\.) The

computational distance with respect to size s circuits, denoted by cd is t s (X, Y), limits T

to be any circuit of size s.

Unconditional Computational Entropy. The min-entropy of a distribution X, de­

noted by Hoo(-^O) is denned as — log(maxx Pr[X = xj). Although min-entropy provides

a rather pessimistic view of a distribution (looking only at its worst-case element), this

notion is useful in cryptography, because even a computationally unbounded predictor can

guess the value of a sample from X with probability at most 2~iio°(x\ Most results on

randomness extractors are formulated in terms of min-entropy of the source distribution.

The first definition says that a distribution has high computational min-entropy if it

is indistinguishable from some distribution with high statistical min-entropy. It can thus

be seen as generalization of the notion of pseudorandomness of [61], which is defined as

indistinguishability from uniform.

Definition 6 ([25, 3]). A distribution X has HILL entropy at least k, denoted by

H^!jLL(X) > k, if there exists a distribution Y such that Hoo(^) > k and cd is t s (X, Y) < e.

(In [25] Y needs to be efficiently samplable; however, for our application, as well as for [3],

samplability is not required.)

Another definition of computational entropy considers compression length. Shannon's

theorem [54] says that the minimum compression length of a distribution, by all possi­

ble compression and decompression functions, is equal to its average entropy (up to small

additive terms). Yao [61] proposed to measure computational entropy by imposing compu­

tational constraints on the compression and decompression algorithms.1 In order to convert

this into a worst-case (rather than average-case) metric similar to min-entropy, Barak et

al. [3] require that any subset in the support of X (instead of only the entire X) be hard

to compress.

1Yao called it "effective" entropy.

www.manaraa.com

35

Definition 7 ([61, 3]). A distribution X has Yao entropy at least k, denoted by Jl£*°(X) >

k, if for every pair of circuits c,d (called "compressor" and "decompressor") of total size s

with the outputs of c having length £,

P r [d{c(x)) = x] < 2e'k + e.

Note that just like HILL entropy, for e = 0 this becomes equivalent to min-entropy (this

can be seen by considering the singleton set of the most likely element).

Conditional Computational Entropy. Before we provide the new conditional defini­

tions of computational entropy, we need to consider the information-theoretic notion of

conditional min-entropy.

Let (Y, Z) be a distribution. If we take the straightforward average of the min-entropies

Ez<-z[HooC^)] to be the conditional min-entropy, we will lose the relation between min-

entropy and prediction probability, which is important for many applications (see e.g.

Lemma 11 and Lemma 16). For instance, if for half of Z, Hoo(^z) = 0 and the other

half Hoo(^z) = 100, then, given a random z, Y can be predicted with probability over 1/2,

much more than 2"5 0 the average would suggest. A conservative approach, taken in [50],

would be to take the minimum (over z) of HooC^z)- 2 However, this definition may kill

"good" distributions like Yz = Un for all z + 0" and Yz = 0n for 2 = 0"; although this

problem can be overcome by defining a so-called "smooth" version [50, 49], we follow a

different approach.

For the purposes of randomness extraction, Dodis et al. [14] observed that because Z is

not under adversarial control, it suffices that the average, over Z, of the maximum proba­

bility is low. They define average min-entropy: H.oo(Y\Z) = — log(E2^z[2_ H o o^y ' 'z = 2 ;^ =

— log(E2<-z[m&Xy Pr[Yj = y]]). This definition averages prediction probabilities before

taking the logarithm and ensures that for any predictor P, ~PY(y^)^{Y,Z)[P{z) = 2/] <

2-HooCn-Z) jj. gjgQ e n s u r e s that randomness extraction works almost as well as it does for

unconditional distributions; see Section 11.1.
2For some applications, e.g. [15, 26], this rather stringent condition can-be met.

www.manaraa.com

36

Using this definition of conditional min-entropy, defining conditional HILL-entropy is

straightforward.

Definition 8 (Conditional HILL entropy). For a distribution (X,Z), we say X has HILL

entropy at least k conditioned on Z, denoted by H.^l{X\Z) > k, if there exists a collection

of distributions Yz (giving rise to a joint distribution (Y,Z)) such that 'H.tX)(Y\Z) > k and

cdists((X,Z),(Y,Z))<e.

For conditional Yao entropy, we simply let the compressor and decompressor have z as

input.

Definition 9 (Conditional Yao entropy). For a distribution (X, Z), we say X has Yao

entropy at least k conditioned on Z, denoted by Jl^a°(X\Z) > k, if for every pair of circuits

c, d of total size s with the outputs of c having length £,

P r \d(c(x,z),z) =x] <2e~k + e.

We postpone the discussion of unpredictability entropy until Section 12.

Asymptotic Definitions. All above definitions are with respect to a single distribution

and fixed-size circuits. We are also interested in their asymptotic behaviors, so we consider

distribution ensembles. In this case, everything is parameterized by n: X^n\ s(n), and e{n).

In such a case, whether circuits in our definitions are determined after n is chosen (the

nonuniform setting), or whether an algorithm of running time s(n) is chosen independent

of n (the uniform setting) makes a difference. We consider the nonuniform setting.

We omit the subscripts s(n) and e(n) when they "denote" any polynomial and neg­

ligible functions, respectively (e(n) is negligible if e(n) €E n - ^ 1 ') . More precisely, we

write HHILL(X(Tl)) > k{n), if there is a distribution ensemble Y^ such that Hoo(^ (n)) >

k(n) for all n, and for every polynomial s(n), there exists a negligible es(n) such that

(l (n ' , y (n >) < es(n). Similarly for the other definitions.

www.manaraa.com

Chapter 10

Separating HILL Entropy from
Yao Entropy

10.1 Separating HILL Entropy from Yao Entropy

In this section we construct a joint distribution (X, Z),1 such that given Z, the distribution

X has high Yao but low HILL entropy; namely, HYao(X\Z) » HH I L L(^I^)- T h i s is a

separation of conditional HILL and Yao entropies. Since Z will be simply a polynomially

long random string, this result can also be viewed as a separation of Yao entropy and HILL

entropy in the Common Reference String (CRS) model. (In this model one assumes that

a uniformly-distributed string of length q(n), for some fixed polynomial g, is accessible to

everyone.)

Our construction uses a non-interactive zero knowledge proof system, so we describe it

briefly in the following section.

10.2 Non-Interactive Zero Knowledge (NIZK)

NIZK was introduced by Blum et al. [6, 5]. For our purposes, a single-theorem variant

suffices. Let A be a positive polynomial and L e MV be a language that has witnesses of

length n for theorems of lengths (A(n — 1), A(n)]. (It is easier for us to measure everything

in terms of witness length rather than the more traditional theorem length, but they are

'Actually, (X, Z) should be defined as a distribution ensemble (X^n\ Z^), but we'll omit the superscript
for ease of notation.

www.manaraa.com

38

anyway polynomially related for the languages we are interested in.) NIZK works in the

CRS model. Let q be a positive polynomial, and let the CRS be r *— Uq^ when witnesses

are of length n. A NIZK proof system for L is a pair of polynomial-time Turing machines

(P, V), called the prover and the verifier (as well as the polynomial q) such that the following

three conditions hold.

1. Completeness: \/(f> G L with NP witness w, if ir = P(<p, w, r) is the proof generated by

P, then Pr r <_^ (n)[V(^7r,r) = 1] = l.2

2. Soundness: Call r bad if 3(f> ^ L, Sir', such that V(</>, 7r',r) = 1 (and 500c! otherwise).

Then P r r _ y w [r is bad] is negligible in n.

3. Zero-knowledgeness: There is a probabilistic polynomial time Turing machine SIM

called the simulator, such that for every cf) € L and every witness w for 0,

SIM(0) = {(f), IlsiMi -RSIM) is computationally indistinguishable from (0, II, R) = {r <—

Uq(n) ; 7T *- P(0,w,r) : (0,7r,r)}.

For our analysis, we need two additional properties. First, we need the proofs n not

to add too much entropy. For this, we use ideas on unique NIZK by Lepinski, Micali and

shelat [34]. We do not need the full-fledged uniZK system; rather, the single-theorem system

described as the first part of the proof of [34, Theorem 1] suffices (it is based on taking

away most of the prover freedom for the single-theorem system of [5]). The protocol of [34]

is presented in the public-key model, in which the prover generates the public key (x, y)

consisting of an n-bit modulus x and n-bit value y 6 Z*. To make it work for our setting,

we simply have the prover generate the public key during the proof and put it into n. Once

the public key is fixed, the prover has no further choices in generating n, except choosing

a witness w for <f> € L (note that this actually requires a slight modification to the proof of

[34], which we describe in Appendix A).

The second property we need is that the simulated shared randomness i?siM is indepen­

dent of the simulator input 4>. It is satisfied by the [34] proof system (as well as by the [5]

2If P is probabilistic, the probability is taken over the choice r and random choices made by P.

www.manaraa.com

39

system on which it is based).

The zero-knowledge property of the [34] proof system is based on the following assump­

tion (the other properties are unconditional).

Assumption 1 (Quadratic Residuousity [22] for Blum Integers). For all probabilistic poly­

nomial time algorithms P, if pi and p2 are random n/2-bit primes congruent to 3 modulo

4, y is a random integer between 1 and p\Pi with Jacobi symbol (-~— j = 1, and b = 1 if

y is a quadratic residue modulo p\P2 and 0 otherwise, then 11/2 — ~Pr[P(y,pip2) — °]\ *s

negligible in n.

The formal statement of the properties we need from [34] follows.

Lemma 7 ([34]+Appendix A). If the above assumption holds, then there exists an NIZK

proof system for any language L G MV with the following additional properties: (1) if r is

good and <p has t distinct witnesses w, then the number of proofs n for cf> that are accepted

by V is at most t22n, and (2) the string Rs\u output by the simulator is independent of the

simulator input 4>.

10.3 The Construction

Our intuition is based on the separation by Wee [60], who demonstrated an oracle relative

to which there is a random variable that has high Yao and low HILL entropy. His oracle

consists of a random length-increasing function and an oracle for testing membership in

the sparse range of this function. The random variable is simply the range of the function.

The ability to test membership in the range helps distinguish it from uniform, hence HILL

entropy is low. On the other hand, knowing that a random variable is in the range of a

random function does not help to compress it, hence Yao entropy is high.

We follow this intuition, but replace the length-increasing random function and the

membership oracle with a pseudorandom generator and an NIZK proof of membership,

respectively. Our distribution X consists of two parts: 1) output of a pseudorandom gen­

erator and, 2) an NIZK proof that the first part is as alleged. However, an NIZK proof

www.manaraa.com

40

requires a polynomially long random string (shared, but not controlled, by the prover and

the verifier). So we consider the computational entropy of X, conditioned on a polynomially

long random string r chosen from the uniform distribution Z = Uq(n).

Let G : {0, l } n —> {0, l}x(-n\ for some polynomial A, be a pseudorandom generator

(in order to avoid adding assumptions, we can build based on Assumption 1), and let

((P, \/),q) be the NIZK proof system guaranteed by Lemma 7 for the MV language L =

{(p | 3a such that (f> = G(a)}. Let Z = R = Uq(n). Our random variable X consists of two

parts (G([/n),7r), where IT is the proof, generated by P, that the first part is an output of

G. More precisely, the joint distribution (X, Z) is defined as {a <— Un ; r <— Uq^ ; n <—

P(G(a), a, r) : ((G(a), n), r)}. Note that because X contains a proof relative to the random

string r, it is defined only after the value r of Z is fixed.

Lemma 8 (Low HILL entropy). HHILL(X|Z) < 3n + 1.

Proof. Suppose there.is some collection {YT}r^z for which Hoo(^|-^) > 3n + 1. We will

show that there is a distinguisher that distinguishes (X, Z) from (Y, Z). In fact, we will use

the verifier V of the NIZK proof system as a universal distinguisher, which works for every

such Y.

Let p(r) = max yPr[y r = y] be the probability of most likely value of the random

variable Yr.

When r is good, the number of (4>,n) pairs for which V(0,7r,r) = 1 is at most 23n:

the total number 2" of witnesses times the number of proofs 22n for each witness. Now,

parse y as a theorem-proof pair. The number of y such that V(y,r) = 1 is at most 23",

and each of these y happens with probability at most p(r). Therefore, when r is good,

Pry^y r[V(y,r) = 1] < 23np(r), by the union bound. Hence, for any r, Pr3/^yT.[V(y, r) —

1 A r is good] < 23np(r) (for good r this is the same as above, and for bad r this probability

is trivially 0, because of the conjunction).

www.manaraa.com

41

Now consider running V on a sample from (Y, Z).

P r [V(y, r) = 1] < P r [r is bad] + P r [V(y, r) = 1 A r is good]
(j/,r) —(y,Z) r ^ Z (j/,r) —(y,Z)

< negl(n) + E [P r [V(y, r) = 1 A r is good]]
r ^ z s/«-yr

< negl(n)+ E [23np(r)]
r^Z

3n„
Li [^
-Z

1
< negl(n) +

(the last inequality follows from the definition of H<x>: 2~**0°(ylz) = Er^-z[p(r)] < 2~(3n+1)).

Since Pr(x,r)<-(x,z)[V{x>r) = 1] = 1> V distinguishes (X, Z) from (Y, Z) with advantage

close to 1/2. ' •

Lemma 9 (High Yao entropy). If Assumption 1 holds, then HYao(X\Z) > A(n).

Proof. Let s(n) be a polynomial. The following two statements imply that under Assump-

def

tion 1, es(n) = cdist s(n)((X, Z), SIM(£/\(n))) is negligible, by the triangle inequality.

1. cdists{n)((X, Z),S\M(G{Un))) is negligible. Indeed, fix a seed a G {0,1}" for G,

and let (Xa,Z) = {r <— Uq(ny,iT <— P(G(a), a , r) : ((G(a), 7r),r)}. By the zero-

knowledge property, we know that cdists^((Xa, Z),S\M(G(a))) is negligible. Since

it holds for every a € {0,1}", it also holds for a random a; we conclude that

cd±sts{n)((X,Z),S\M(G{Un))) is negligible.

2. cdists(n)(SIM(f/x(n)), S\M(G(Un))) is negligible, because G is a pseudorandom gener­

ator.

By definition of es(n), if the compressor and decompressor c and d have total size t, then

Pr \d(c(x, z),z) = x] - Pr \d(c(x,z),z) = x] < es(n),
(x,z)^(X,Z)1 (x,z)^S\M(Ux(n))

1 ~

where s = t + (size of circuit to check equality of strings of length |x|), because we can use

d(c(-, •), •) together with the equality operator as a distinguisher.

Let the output length of c be £. Then P r ^ ^ s n ^ i /)[d(c(x, z)i z) = x] < 2e~x(n\

because for every fixed z, x contains <f> £ U\{n) (because by Lemma 7, z is independent of

www.manaraa.com

42

4> in the NIZK system we use). Hence Pr(x,z)<-(x,z)[d{c(x, z), z) — x] < 2e~x^ + es(n),

and ~Kl*?n\ t,nAX\Z) > A(n). For every polynomial t(n), the value s(n) is polynomially

bounded, and therefore es(n) is negligible, so tiyao(X\Z) > A(n). D

Remark 1. In the previous paragraph, we could consider also the simulated proof n (recall

x = (4>, n)) when calculating Pr^XtZ^s\hA(Ux,n))[d(c(x, z), z) = x] for even higher Yao entropy.

A simulated proof IT contains many random choices made by the simulator. Although the

simulator algorithm for [34] is not precisely specified, but rather inferred from the simulator

in [5], it is quite clear that the simulator will get to flip at least three random coins per clause

in the 3-CNF formula produced out of <f> in the reduction to 3-SAT (these three coins are

needed in order to simulate the location of the (0,0,0) triple [34, proof of Theorem 1, step 9]

among the eight triples). This more careful calculation of Pr^z^siMft/w^) [d(c(x, z), z) = x]

will yield the slightly stronger statement HYa0(X\Z) > A(n) + Sj(n), where j(n) is the

number of clauses in the 3-CNF formula. This more careful analysis is not needed here, but

will be used in Section 11.3.

Since for any polynomial A(n), we have pseudorandom generators of stretch A, Lemma 8

and Lemma 9 yield the following theorem.

Theorem 10 (Separation). Under the Quadratic Residuosity Assumption, for every polyno­

mial X, there exists a joint distribution ensemble (X^n\ Z^) such that HYao(X^ | Z^1) >

A(n) and B.HiLL(X^ | Z^) < 3n + 1. Moreover, Z^ = Uq{n) for some polynomial q{n).

www.manaraa.com

Chapter 11

Randomness Extraction

As mentioned in the introduction, one of the main applications of computational entropy

is the extraction of pseudorandom bits. Based on Theorem 10, in this section we show

that the analysis based on Yao entropy can yield many more pseudorandom bits than the

traditional analysis based on HILL entropy. Although Theorem 10 is for the conditional

setting, we will see an example of extraction that benefits from the conditional-Yao-entropy

analysis for the unconditional setting as well.

Before talking about extracting pseudorandom bits from computational entropy, let us

look at a tool for analogous task in the information-theoretic setting: an extractor takes

a distribution Y of min-entropy k, and with the help of a uniform string called the seed,

"extracts" the randomness contained in Y and outputs a string of length m that is almost

uniform even given the seed.

Definition 10 ([42]). A polynomial-time computable function E : {0, l } n x {0, l}d —>

{0, l}m x {0, l}d is a strong (k,e)-extractor if the last d output bits of E are equal to the

last d input bits (these bits are called seed,), and dist((E(X,Ud),Um x Ua) < e for every

distribution X on {0, l } n with Hoo(-^0 > k. The number of extracted bits is m, and the

entropy loss is k — m.

There is a long line of research on optimizing the parameters of extractors: minimizing

seed length, minimizing e, and maximizing m. For applications of primary interest here—

using extracted randomness for cryptography—seed length is less important, because strong

www.manaraa.com

44

extractors can use non-secret random seeds, which are usually much easier to create than

the secret from which the pseudorandom bits are being extracted. It is more important to

maximize m (as close to k as possible), while keeping e negligible.1

11.1 Extracting from Conditional HILL Entropy

It is not hard to see that applying an extractor on distributions with HILL entropy yields

pseudorandom bits; because otherwise the extractor together with the distinguisher violate

the definition of HILL entropy. We show the same for the case of conditional HILL entropy.

We reiterate that in the conditional case, the variable Z is given to the distinguisher who

is trying to tell the output of the extractor from random.

Lemma 11. IfU^s
L(x\z) > k, then for any (k-log ±,e2)-extractor E : {0,1}" x {0, l}d -»

{0 , l} m ,

cd i s t ({(i, z) • - (X, Z) : (E{x, Ud), z)}, Um x Ud x Z) < ei + e2 + 5,
s'

where s' = s — size(E).

Proof. H^1'is
L(^|-^) > k means that there is a collection of distributions {Yz}z€z such that

cdistS((X,Z)(Y,Z)) < ei, and Hoo(^l^) > k. By Markov's inequality, Prz e Z[HOo0'*) <

k — log |] < 5. Hence, the extractor works as expected in all but 5 fraction of the cases; that

is, for all but 5 fraction of z values, dist(E(Yz,U,i),Um x Ud) < £2- Taking expectation

over z £ Z, we get

d i s t ({(y, z) <- (Y, Z) : (E(y, Ud), z)}, Um x Ud x Z) < e2 + 5 ,

because d i s t is bounded by 1. The desired result follows by triangle inequality. •

Remark 2. The entropy loss of E is at least 2 log j — 0(1), by a fundamental constraint

on extractors [47], giving us a total entropy loss of at least log | + 2 log j — 0(1) ' The loss

of log | can be avoided for some specific E, such as pairwise-independent (a.k.a. strongly

1 This is in contrast to the derandomization literature, where a small constant e suffices, and one is more
interested in (simultaneously) maximizing m and minimizing d.

www.manaraa.com

45

universal) hashing [8], as shown in [14, Lemma 4.2]; because pairwise-independent hashing

has optimal entropy loss of 2 log j — 2, this gives us the maximum possible number of

extracted bits. The loss of log | can be also avoided when mmzez H<x>{Yz) > fc (as is the

case in, e.g., [15]).

Using an extractor on distributions with HILL entropy (the method that we just showed

extends to conditional HILL entropy) is a common method for extracting pseudorandom

bits. HILL entropy is used, in particular, because it is easier to analyze than Yao entropy.

In fact, in the unconditional setting, the only way we know how to show that a distribu­

tion has high Yao entropy (incompressibility) is by arguing that it has high HILL entropy

(indistinguishability). Nevertheless, Barak et al. [3] showed that some extractors can also

extract from Yao entropy.

11.2 Extracting from Conditional Yao Entropy

Barak et al. [3] observed that extractors with the so-called reconstruction procedure can

be used to extract from Yao Entropy. Thus, Theorem 10 (HY a o(^ |Z) » HHILL(X|Z))

suggests that such a reconstructive extractor with a Yao-entropy-based analysis may yield

more pseudorandom bits than a generic extractor with a traditional HILL-entropy-based

analysis. We begin with a definition from [3], with minor modifications for our purposes

(see explanation following the definition).

Definition 11 (Reconstruction procedure). An (£, e)-reconstruction for a function E :

{0,1}" x {0, l}d —> {0, l } m x {0, \}d (where the last d output bits are equal to the last d

input bits) is a pair of randomized polynomial-size oracle circuits C^'' : {0, 1}" —> {0,1}^

and £>(•) : {0,1}^ -> {0,1}", that share the same random coins. Furthermore, for every x

andT, tf\Pr[T(E{x,Ud)) = 1] -Pr[T(Um x Ud) = 1]| > e, then VT[DT\CT\X)) = x\ > 1/2

(the probability is over the shared random coins of C and D).

Our definition of reconstruction procedure differs from [3] in the following ways:

www.manaraa.com

46

• It is with respect to strong extractors2 (as opposed to generic extractors) since we will

only be using extractors of this kind.

• We let C and D be circuits instead of Turing machines because we define the Yao

entropy with respect to circuit adversaries.

• We let C and D share their random coins. The advantage is that £ can be smaller

because the output of C does not need to contain anything about the coins. This

is especially useful when later we want to extract almost all of Yao entropy from a

distribution, using a reconstructive extractor. We also give C oracle access to T. This

broadens the class of possible C and D (since if C doesn't use its oracle and uses a

subset of random coins that are not used by D, then we are in the original definition

of [3]), and makes Lemma 12 applicable to more situations. It also enables us to prove

Theorem 14 later.

Trevisan [58] showed, implicitly, that any E with an (£, e)-reconstruction is an (£ +

log -,3e)-extractor. Thus, any function with a reconstruction procedure is an extractor; it

is called a reconstructive extractor.

Barak et al. [3] showed that reconstructive extractors can be used to extract pseudo­

random bits from distributions with Yao entropy. We extend the proof of Barak et al. so

that their result holds for the conditional version of Yao entropy.

Lemma 12. Let X be a distribution with H^a
s°(X\Z) > k, and let E be an extractor with an

(£, e)-reconstruction (C, D), where £ = k — log j . Then E extracts psuedorandom bits from

X: namely, cdists>((E(X, Ud), Z), Um x Ud x Z) < 5e, where s' = s/(size(C)+size(D)).

Proof. Assume, for the purpose of contradiction, that there is a distinguisher T of size s'

such that \Pr[T(E(X,Ud),Z) = 1] - Pr[T(C/m x Ud x Z) = 1]| > 5e. By the Markov

inequality, there is a subset S in the support of (X, Z) such that Pr[(X, Z) G S] > 4e, and

V(x,z) e S, \Pr[T(E{x,Ud),z) = l)-Pr[T(Um x Ud, z) = 1]| > e. For every pair (x, z) e S,

2Recall that a strong extractor is an extractor that also outputs its seed.

www.manaraa.com

47

~Pr[DT('<z\CT(''z\x)) = x] > 1/2, where the probability is over the shared random coins of

C and D (note that fixing z is important, because C and D are defined with respect to an

oracle that does not expect z as an input). Thus, there is a fixing of the random choices of C

and D, denoted by circuits C,D, such that Pr^XtZ)^XtZ)[DT(-'^(CT^'z)(x)) = x] > 2e. Let

c(x,z) = (^ ^ (x) and d(y,z) = DT^^{y) be the compression and decompression circuits,

respectively. Then Pr(x>2)^(x,z)[^(c(a;) z)>2) = x] > 2e = 2^_fc + e, a contradiction. •

The above lemma does not yield more pseudorandom bits when given a distribution that

has high Yao but low HILL entropy, unless we have a reconstructive extractor with long

output length (compared to generic extractors, which work for HILL entropy). Fortunately,

given any reconstructive extractor, there is a simple way to increase the number of pseudo­

random bits extracted: apply the extractor multiple times on the same input distribution

but each time with an independent fresh seed.3 Furthermore, there do exist reconstructive

def

extractors; e.g., the well-known Goldreich-Levin extractor: GL(x,r) = (x • r) o r, where

o denotes concatenation and • denotes inner product, is a reconstructive one. Below, we

describe more precisely how to extract most of Yao entropy from a distribution using the

GL extractor.

We first rephrase a lemma from [19] to show that GL is a reconstructive extractor, and

then show that we can indeed apply GL on the same input distribution multiple times.

Lemma 13 (Goldreich-Levin [19]). There is a randomized oracle Turing machine I such

that given any e > 0 and any oracle T : {0, l} n+ ! —» {0,1}, runs in time poly(n, ^) and

outputs a set L of size poly(n, ^) so that for every x € {0, l}n

| P r [T(x • r,r) = 1] - P r [T(u,r) - 1]| > e => P r [x € L] > \
r-^Un u<—U\,r<—Un I s coins Z

For a proof, see Lemma 1 in [19] and Theorem 1 in [57].

3This requires a long seed, but as mentioned earlier in this Chapter, our primary concern is on the
extracted randomness instead of seed length.

www.manaraa.com

48

To see that GL is reconstructive, simply let the reconstruction procedure (C, D) run /

to get the set L. On input x, the machine C outputs the index of x in the set L (or some

arbitrary string if x $ L) so that later D can restore x. Since C and D share the same

random coins, they produce the same L. And x can be reconstructed with probability more

than 1/2.

Theorem 14. Let GL : {0, l } n x {0, l } n -» {0,1} x {0,1}" be the Goldreich-Levin extractor

with (£, e)-reconstruction (C, D), and let X be a distribution over {0, l } n with H^a
s°(X\Z) >

p + e + log\. Define E : {0,1}™ x {0, l}*"1 -» {0,1}P x {0, \}pn as follows:

E{x,r1,...,rp) = ((x-ri)o---o(x-rp))o(rio---orp).

Then cdistsi(E(X,Upn),Z),Up x U^ x Z) < 5pe, where s' = siz^c)°+^ze(D)'

Proof. The proof is by hybrid argument. For a fixed a; and 2, let p(j) be Pr[T(((x •

ri) o • • • o (x • rj) o bj+\ o • • • o bp) o [r\ o • • • o rp), z) = 1], where the probability is over

{ n , . . . , rp <— [/„, bj+i, • • • ,bp <— t/i}. Now assume, for the purpose of contradiction, that

there is a distinguisher T of size s' such that | Pr[T(£(X, C/pn), Z) = 1] - Pr[T{Up x Upn x

Z) = 1]| > 5pe; that is, | "EI(X,Z)^(X,Z)\P(P) — p(0)]| > 5/oe. By the triangle inequality, there

exists an i e { l , . . . , p } such that \~Ei[x,z)^-{x,z)\p{^) ~Pi} ~ 1)]| > 5e. So, there exists a

fixing of all the rj and bj except V{ and 6j for which |E(i,2)<-(x,z)[Pi — Poll > 5e, where

pi = Pr[T(((x • n) o • • • o (x • rj_!)o (x • rj) ofy+1 o • • • o bp) o (n o • ••• o rp), z) = 1]

p0 = Pr[T(((x • ri) o • • • o (x • rj_i)o fcj ob i+1 o • • • o bp) o (n o • • • o rp), z) = 1]

and the probabilities are taken over only j-* and frj.By the Markov inequality, there is a subset

S in the support of (X, Z) such that Pr[(X, Z) G 5] > 4e, and V(x, z) € S, \pi - p0\ > e.

In order to get a contradiction, we want to use C and D to compress x given z. C and

I? need to call a distinguisher that can distinguish ((x-r^),^) from (&i,rj). However, we do

not have such a distinguisher: rather, we have T, which, from the above analysis, we know

we can use for some fixed set of rj and bj (for j ^ i) as long as we also provide it with x • rj

www.manaraa.com

49

for j < i. The fixed set of Tj and bj for j ^ i can be simply hardwired into C and D. The

values x • rj are more problematic: C can compute them because it has access to x, but

D cannot. So we need to modify C to compute the x • Vj and append them to its output,

and modify D to use them. Call the resulting modified procedures (C,D). Note that the

output length of C is at most p + 1 — 1, because it appends at most p — 1 bits to the output

of C.

For every pair (x,z) € S, Pr[DT('z\CT(-''z\x)) = x] > 1/2, where the probability is

over the shared random coins of C and D. Thus, there is a fixing of the shared random coins

of C and D, denoted by circuits C,D, such that Pr{x^z)^X:Z)[DT^'z\CT^'z){x)) = x] > 2e.

Let c(x,z) = CTt>z\x) and d(y,z) = DT^'z\y) be the compression and decompression

circuits, respectively. Recall that the output length of c is less than p + £, and thus

Pr(x„*MX,z)M(c(x, z),z) = A > 2 e = 2^+^-^+^+ 1°s .) + e, a contradiction. •

For the Goldreich-Levin extractor, I is the length of the index for the set L, which

is 0(log j). Then Theorem 14 shows that E extracts p pseudorandom bits out of any

distribution that has Yao entropy p + ^ + log^- = p + 0(log ^) , which means that it is

possible to extract almost all of Yao entropy (e.g., if the negligible e = 2~polylog(n) suffices,

then all but a polylogarithmic amount of entropy can be extracted).

We remark, however, that the resulting extractor is not a reconstructive one. The

reason being that by our definition, reconstruction procedures C and D do not depend on

T. This property of C and D is crucial to the proof of Lemma 12 because the distinguisher

T depends on z. If C and D were to depend on T, they would depend on z too, which would

make the proof fail. This is in contrast to the unconditional setting, where we may allow

reconstruction procedures to depend on T (see, e.g., Section 3.3 in the survey by Shatiel [53]:

there exist CT and DT for every T) and still be able to extract pseudorandomness from Yao

entropy.

Theorem 14 can be generalized to strong extractors (not just Goldreich-Levin) with out­

put length m + d, for m > 1. More precisely, we can extract pm (instead of p) pseudorandom

www.manaraa.com

50

bits out of any distribution that has Yao entropy pm + I + log i (instead of p + £ + log ^).

Using the distribution of Theorem 10, we can set e = 2~n to extract X(n) — 0(n) bits

from X that are pseudorandom even given Z (note that here n is not the length of X;

rather, X(n) is). This is more than the linear number of bits extractable from X using the

analysis based on conditional HILL entropy.

11.3 Unconditional Extraction

In this section, let (X; Z) = {(G(Un),U),R) = {a <- Un ; r «- Uq{n) ; TT «- P (G(a) , a , r) :

((G(a),Tr),r)} as defined in Section 10.3. The question is: how many pseudorandom bits

can we extract from the unconditional distribution (X, Z)l Surprisingly, analysis based on

conditional entropy yields more bits than unconditional analysis, demonstrating that the

notion of conditional entropy may be a useful tool even in the analysis of pseudorandomness

of unconditional distributions.

Analysis based on unconditional entropy. The straightforward way is to apply an

extractor on (X, Z). This gives us almost k pseudorandom bits provided that HH I L L(^, Z) >

k, or H Y a o (^ , Z) > k for reconstructive extractors (see previous sections). However, the best

we can show is that HH I L L(^, Z) = X(n) + q(n) + 0(n) (the analysis appears in Appendix B),

and hence we cannot prove, using HILL entropy, that more than X(n) + q{n) + 0{n) bits

can be extracted. On the other hand, we do not know if H Y a o (^ , Z) is higher; this is closely

related to the open problem of whether HILL entropy is equivalent to Yao entropy, and

appears to be difficult.4 Thus, analysis based on unconditional entropy does not seem to

yield more than A(n) + q(n) + 0(n) bits.

4 To show that HY a o(X,Z) is high, one would have to show that the pair {X,Z) cannot be compressed;
the same indistinguishability argument as in Lemma 9 does not work for the pair (X, Z), because in the
simulated distribution, Z is simulated and thus has less entropy. It is thus possible that both the real
distribution (where Z is random and 0 in X is pseudorandom) and the simulated distribution (where 4> is
random and Z is pseudorandom), although indistinguishable, can be compressed with the help of the proof
n.

www.manaraa.com

51

More bits from conditional Yao entropy. Analysis based on conditional HILL entropy

seems to yield even fewer bits (see Lemma 8). But using conditional Yao entropy, we get

the following result.

Lemma 15. It is possible to extract 4A(n) + q(n) — 0(n) pseudorandom bits out of (X, Z).

Sketch. According to Remark 1 following Lemma 9, we can show that the conditional

Yao entropy HYao(X\Z) > A(n) + 37(n), where 7(n) is the number of clauses in the 3-

CNF formula produced from <f> hi the reduction from L to 3-SAT. Since 7(n) > A(n), we

can extract 4A(n) — 0(n) bits from X that are pseudorandom even given Z, by the last

paragraph of Section 11.2. Noting that Z is simply a uniform string5, we can append it to

the pseudorandom bits extracted from X and obtain an even longer pseudorandom string.

Thus, we get 4A(n) + g(n) — 0{n) pseudorandom bits using the analysis based on conditional

Yao entropy. •

5In case Z is not uniform but contains some amount of entropy, we can apply another extractor on it.

www.manaraa.com

Chapter 12

Unpredictability Entropy

In this chapter, we introduce a new computational entropy, which we call unpredictability

entropy. Analogous to min-entropy, which is the logarithm of the maximum predicting

probability, unpredictability entropy is the logarithm of the maximum predicting probabil­

ity where the predictor is restricted to be a circuit of polynomial size. Note that in the

unconditional setting, unpredictability entropy is just min-entropy; a small circuit can have

the most likely value hardwired. In the conditional setting, however, this new definition can

be very different from min-entropy, and in particular, allows us to talk about the entropy of

a value that is unique, such as gxy where gx and gy are known to the observer, and possibly

even verifiable, such as the preimage x of a one-way permutation / , where y = f(x) is

known to the observer.

Definition 12 (Unpredictability entropy). For a distribution (X,Z), we say that X has

unpredictability entropy at least k conditioned on Z, denoted by He"f(X\Z) > k, if

there exists a collection of distributions Yz (giving rise to a joint distribution (Y, Z)) such

that cdis t s ((X, Z), (Y> Z)) < e, and for all circuits C of size s,

Pr[C(Z) = Y] < 2~k.

Remark 3. The parameter e and the variable Y do not seem to be necessary in the

definition; we can simply require Pr[C(Z) = X] < 2~k. However, they make this definition

smooth [49] and easier to compare with existing definitions of HILL and Yao entropy.

www.manaraa.com

53

Remark 4. Note that our entropy depends primarily on the predicting probability, as

opposed to on the size of the predicting circuit or the combination of both (see e.g., [56,

25]). We choose to have s fixed, in order to accommodate distributions with nonzero

information-theoretic entropy; otherwise the computational entropy of such distribution

would be infinite because the predicting probability doesn't increase no matter how big the

predicting circuit grows. For the case of one-way function, unpredictability entropy is what

is often called "hardness." This notion is more general, and provides a simple language

for pseudorandomness extraction: namely, a distribution with computational entropy k

contains k pseudorandom bits that can be extracted (see below).

Relat ion to Other Notions and Bit Ext rac t ion In the rest of this chapter we show

that high conditional HILL entropy implies high unpredictability entropy, which in turn

implies high conditional Yao entropy. Note that, assuming exponentially strong one-way

permutations / exist, unpredictability entropy does not imply conditional HILL entropy:

simply let (X,Z) = (x,f(x)).

Lemma 16. H™S
LL(X\Z) > k => Ke7(X\Z) > k.

Proof. H™S
LL(X\Z) > k means that there is a collection of {Yz}z&z such that H.oo(Y\Z) > k

and cdis t s ((X, Z), (y, Z)) < e. And Hoo(y|Z) > k means that E z^z[maxy P r [F = y\Z =

z}] < 2~k, which implies that for all circuits C of size s, Pr[C(Z) = Y) < 2~k. D

Lemma 17. uZP(X\Z) >k=> M^S°(X\Z) > k.

Proof. He,"P(^|'2') > k means that there is a collection of distributions {Yz}zEz such that

cdists((X,Z), (Y,Z)) < e, and for all circuits'C of size s, Pr[C(Z) = Y] < 2~k. We will

show that Hoa°(Y\Z) > k, which in turn implies H^S°(X\Z) > k.

Suppose for contradiction that H^a
s°(^\Z) < k. Then there exists a pair of circuits c, d

of total size s with the outputs of c having length £, such that Pr^yz^^Y,z)[d{c(y,z),z) =

y] > 2e~k. Because \c(y, z)\ = I, guessing the correct value of c(y,z) is at least 2~e, so

www.manaraa.com

54

~Pr(a,y,z)<-(ue,Y,z)[d(aiz) — v\ > ^~k ' 2~e = 2_/c, a contradiction since d(a,-) (with some

fixing of a) is a circuit of size at most s. So Jlo*°(Y\Z) > k.

Next, suppose for contradiction that \£[3°{X\Z) < k. Then there is a pair of circuits c, d

of total size s with the outputs of c having length £, such that Pr(x,z)^(x,Z)[^(c(x!2;)> z) —

x] > 2^~k + e. But Pr(ytZ)i_(ytz)[d(c(y, z), z) = y] < 2i~k, which means that d(c(-, •), •) can

be used to distinguish (X, Z) from (Y, Z) with advantage more than e, a contradiction to

cdis t s ((X, Z), (Y, Z)) < e. Hence fg*°(X\Z) > k. D

From Section 11.2, we know how to extract almost k bits from distributions with Yao

entropy k, by using reconstructive extractors. Lemma 17 implies that the same method

works for unpredictability entropy. Thus, the notion of unpredictability entropy allows for

more general statements of results on hardcore bits (such as, for example, [19, 56]), which

are usually formulated in terms of one-way functions. Most often these results generalize

easily to other conditionally unpredictable distributions, for instance, the Diffie-Hellman

distribution (gxy \g,gx,gy)- However, such generalization is not automatic, because a pre­

diction of a one-way function inverse is verifiable (namely, knowing y, one can check if the

guess for f~l(y) is correct), while a guess of a value of a conditionally unpredictable dis­

tribution in general is not (indeed, the Diffie-Hellman distribution does not have it unless

the decisional Diffie-Hellman problem is easy). Thus, it would be beneficial if results were

stated for the more general case of unpredictable distributions whenever such verifiability

is not crucial. Unpredictability entropy provides a simple language for doing so.

www.manaraa.com

Appendix A

Modifications to the Proof of [34]

The proof of Theorem 1 in [34] requires the n-bit modulus x chosen by the prover (and, in

our case, included as part of the proof) to be a Blum integer, i.e., a product of two primes

that are each congruent to 3 modulo 4. However, the proof n (using the techniques from [5])

guarantees only that x is "Regular(2)," i.e., is square-free and has exactly two distinct odd

prime divisors. In other words, we are assured only that x is of the form plq3 for some odd

primes p, q and some i,j not simultaneously even. Soundness does not suffer if a prover

maliciously chooses such an x that is not a Blum integer, but the uniqueness property does:

there may be more than one valid proof 7r, because TT consists of square roots s of values

in Z* such that the Jacobi symbol (§) = 1 and s < x/2, and there may be more than one

such square root if x is not a Blum integer.

One approach to remedy this problem is to use the technique proposed in countable

zero-knowledge of Naor [39, Theorem 4.1]: to include into 7r the proof that x is a Blum

integer. Another, simpler, approach (which does not seem to work for the problem in [39],

because the length of the primes is important there) is to require the verifier to check that

x = 1 (mod 4). This guarantees that either p = q = 3 mod 4 and i, j are odd, in which

case uniqueness of a square root r < x/2 with (j) = 1 is guaranteed, or pl = qJ= 1 mod 4,

in which case simple number theory (case analysis by the parity of i, j) shows that half the

quadratic residues in Z* have no square root r with (j) = 1. Thus, such an x that allows

for non-unique proofs is very unlikely to work for a shared random string r, and we can

55

www.manaraa.com

56

simply add strings r for which such an x exists to the set of bad strings (which will remain

of negligible size).

www.manaraa.com

Appendix B

Unconditional HILL Entropy of

Recall that (X,Z) = ((G(Un),U),R) = {a <- Un ; r <- Uq{n) ; n <- V(G(a),a,r) :

((G(a),7r),r)}. Below, we show that HHILL(X,Z) > \(n) + q(n) + 0(n); it is unclear if

higher HILL entropy can be shown. The discussion assumes some familiarity with the NIZK

system for 3-SAT, by Lepinski, Micali, and shelat [34].

By the zero-knowledgeness, the output distribution (A"SIM,^SIM) of the simulator is in­

distinguishable from (X, Z). So HH I L L(^, Z) is no less than the min-entropy of (XSIM, ^SIM)-

We count how many choices the simulator SIM has: there are,

• 2x(n> theorems to prove,

• fewer than 22n proving pairs to choose from (a proving pair is an n-bit Blum integer

x and an ro-bit quadratic residue y G Z*),

• 2q(jl}~K<Jl} choices for shared "random" string r, where «(n) is the number of Jacobi

symbol 1 elements of Z* included in r (because in the simulated r, these elements

must be quadratic residues in Z*),

• 2R(n> choices for claiming, in the simulated proof, whether each of the Jacobi symbol

1 elements in r is a quadratic residue or a quadratic nonresidue (the simulator gets

to make false claims about that, because in the simulated r, they are all residues).

57

www.manaraa.com

58

Taking the logarithm of the number of choices, we have HH I L L(^, Z) > X(n) -f q(n) + 0(n).

This seems to be the best we can do, as we do not know whether there are other distribution

that is indistinguishable from (X, Z).

www.manaraa.com

59

Bibliography
Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing,
Seattle, Washington, 15-17 May 1989.

Malcolm Adams and Victor Guillemin. Measure Theory and Probability. Springer-Ver-
lag, 1996.

Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of entropy.
In Sanjeev Arora, Klaus Jansen, Jose D. P. Rolim, and Amit Sahai, editors, RANDOM-
APPROX 2003, volume 2764 of Lecture Notes in Computer Science, pages 200-215.
Springer, 2003.

Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards making
UOWHFs practical. In Burton S. Kaliski, Jr., editor, Advances in Cryptology—
CRYPTO '97, volume 1294 of Lecture Notes in Computer Science, pages 470-484.
Springer-Verlag, 1997.

Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SI AM Journal on Computing, 20(6):1084-1118, December 1991.

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, pages 103-112, Chicago, Illinois, 2-4 May 1988.

Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SI AM Journal on Computing, 13(4):850-863, November 1984.

J. Larry Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18:143-154, 1979.

Yan-Cheng Chang, Chun-Yun Hsiao, and Chi-Jen Lu. On the impossibilities of basing
one-way permutations on central cryptographic primitives. In Yuliang Zheng, edi­
tor, Advances in Cryptology—ASIACRYPT 2002, volume 2501 of Lecture Notes in
Computer Science, pages 110-124, Queenstown, New Zealand, 1-5 December 2002.
Springer-Verlag.

Ivan Damgard. Collision-free hash functions and public-key signature schemes. In
David Chaum and Wyn L. Price, editors, Advances in Cryptology—EUROCRYPT 81,
volume 304 of Lecture Notes in Computer Science. Springer-Verlag, 1988, 13-15 April
1987.

Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without
interaction. In 33rd Annual Symposium on Foundations of Computer Science, pages
427-436, Pittsburgh, Pennsylvania, 24-27 October 1992. IEEE.

Nenad Dedic, Danny Harnik, and Leonid Reyzin. Saving private randomness in one-way
functions and pseudorandom generators. In Ran Canetti, editor, Theory of Cryptog­
raphy Conference, volume 4948 of Lecture Notes in Computer Science, pages 607-625.
Springer, 2008.

Whitfield Dime and Martin E. Hellman. New directions in cryptography. IEEE Trans­
actions on Information Theory, IT-22(6):644-654, 1976.

Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. Technical Re­
port 2003/235, Cryptology ePrint archive, h t t p : / / e p r i n t . i a c r . o r g , 2006. Previous
version appeared at EUROCRYPT 2001

http://eprint.iacr.org

www.manaraa.com

60

[15] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Secure hashed Diffie-Hellman
over non-DDH groups. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology^EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Sci­
ence, pages 361-381. Springer-Verlag, 2004.

[16] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic crypto­
graphic constructions. In J^lst Annual Symposium on Foundations of Computer Science
[29].

[17] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious transfer.
In ^lst Annual Symposium on Foundations of Computer Science [29], pages 325-335.

[18] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trap­
door functions on trapdoor predicates. In 42nd Annual Symposium on Foundations of
Computer Science, Las Vegas, Nevada, October 2001. IEEE.

[19] Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way functions. In
ACM [1], pages 25-32.

[20] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. Available From http://www.mit.edu/~tauman/.

[21] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. In 44th Annual Symposium on Foundations of Computer Science [30], pages
102-113.

[22] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270-299, April 1984.

[23] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SI AM Journal on Computing, 17(2):281-308,
April 1988.

[24] Iftach Haitner. Implementing oblivious transfer using collection of dense trapdoor
permutations. In Naor [40], pages 394-409.

[25] Johan Hastad, Russell Impagliazzo, Leonid Levin, and Michael Luby. Construction of
pseudorandom generator from any one-way function. SIAM Journal on Computing,
28(4): 1364-1396, 1999.

[26] Thomas Holenstein. Pseudorandom generators from one-way functions: A simple con­
struction for any hardness. In Shai Halevi and Tal Rabin, editors, Theory of Cryptog­
raphy Conference, volume 3876 of Lecture Notes in Computer Science, pages 443-461.
Springer, 2006.

[27] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational entropy,
or toward separating pseudoentropy from compressibility. In Moni Naor, editor, Ad­
vances in Cryptology—EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer
Science, pages 169-186. Springer-Verlag, 2007.

[28] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure
hash functions need secret coins. In Matt Franklin, editor, Advances in Cryptology—
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 92-105.
Springer-Verlag, 15-19 August 2004.

[29] IEEE. 41st Annual Symposium on Foundations of Computer Science, Redondo Beach,
California, November 2000.

http://www.mit.edu/~tauman/

www.manaraa.com

61

IEEE. 44th Annual Symposium on Foundations of Computer Science, Cambridge,
Massachusetts, October 2003.

Russell Impagliazzo. Remarks in open problem session at the dimacs workshop on
pseudorandomness and explicit combinatorial constructions, 1999.

Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one­
way permutations. In ACM [1], pages 44-61.

Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient conditions for collision-
resistant hashing. In The 2nd Theory of Cryptography Conference, pages 445-456,
2005.

Matt Lepinski, Silvio Micali, and Abhi Shelat. Fair-zero knowledge. In Joe Kilian,
editor, Theory of Cryptography Conference, volume 3378 of Lecture Notes in Computer
Science, pages 245-263. Springer-Verlag, 2005.

Ralph C. Merkle. Secrecy, Authentication, and Public Key Systems. UMI Research
Press, 1982.

Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Advances in
Cryptology—CRYPTO '89, volume 435 of Lecture Notes in Computer Science, pages
218-238. Springer-Verlag, 1990, 20-24 August 1989.

Silvio Micali, Michael Rabin, and Joe Kilian. Zero-knowledge sets. In 44^ Annual
Symposium on Foundations of Computer Science [30], pages 80-91.

Ilya Mironov. Hash functions: From Merkle-Damgard to Shoup. In Joe Kilian, editor,
Advances in Cryptology—CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 166-181. Springer-Verlag, 2001.

Moni Naor. Evaluation may be easier than generation. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on the Theory of Computing, pages 74-83, Philadel­
phia, Pennsylvania, 22-24 May 1996.

Moni Naor, editor. First Theory of Cryptography Conference — TCC 2004, volume
2951 of Lecture Notes in Computer Science. Springer-Verlag, February 19-21 2004.

FIPS publication 180-1: Secure hash standard, April 1995. Available from
h t t p : / / c s r c . n i s t . g o v / f i p s / .

Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Com­
puter and System Sciences, 52(l):43-53, 1996.

Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In J. Feigenbaum, editor, Advances in Cryptology—CRYPTO '91, vol­
ume 576 of Lecture Notes in Computer Science, pages 129-140. Springer-Verlag, 1992,
11-15 August 1991.

Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
The 40th ACM Symposium on Theory of Computing, pages 187-196, 2008.

Michael O. Rabin. Digitalized signatures. In Richard A. Demillo, David P. Dobkin,
Anita K. Jones, and Richard J. Lipton, editors, Foundations of Secure Computation,
pages 155-168. Academic Press, 1978.

Michael O. Rabin. Digitalized signatures and public-key functions as intractable as
factorization. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Tech­
nology, Cambridge, MA, January 1979.

http://csrc.nist.gov/fips/

www.manaraa.com

62

Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors, and
depth-two super concentrators. SI AM Journal on Computing, 13(l):2-24, 2000.

Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibility between
cryptographic primitives. In Naor [40], pages 1-20.

Renato Renner and Stefan Wolf. Smooth renyi entropy and applications. In Proceedings
of IEEE International Symposium on Information Theory, page 233, June 2004.

Renato Renner and Stefan Wolf. Simple and tight bounds for information recon­
ciliation and privacy amplification. In Bimal Roy, editor, Advances in Cryptology—
ASIACRYPT 2005, Lecture Notes in Computer Science, Chennai, India, 4-8 December
2005. Springer-Verlag.

Ronald L. Rivest. IETF RFC 1321: The MD5 Message-Digest Algorithm. Internet Ac­
tivities Board, April 1992. Available from h t t p : / /www. i e t f . o rg / r f c / r f c l321 . t x t .

Alexander Russell. Necessary and sufficient conditions for collision-free hashing. Jour­
nal of Cryptology, 8(2):87-100, 1995.

Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of
the European Association for Theoretical Computer Science (EATCS), 77:67-95, 2002.

Claude E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379-423 and 623-656, July and October 1948. Reprinted in D. Slepian,
editor, Key Papers in the Development of Information Theory, IEEE Press, NY, 1974.

Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions. In Kaisa Nyberg, editor, Advances in Cryptology—
EURO CRYPT 98, volume 1403 of Lecture Notes in Computer Science. Springer-Verlag,
May 31-June 4 1998.

Amnon Ta-Shma and David Zuckerman. Extractor codes. In ACM Symposium on
Theory of Computing, pages 193-199, 2001.

Luca Trevisan. Notes for Lecture 8. CS294: Pseudorandomness
and Combinatorial Constructions. U.C. Berkeley. Available from
ht tp: / /www.cs.berkeley.edu/~luca/pacc/ lecture08.pdf .

Luca Trevisan. Construction of extractors using pseudo-random generators (extended
abstract). In A CM Symposium on Theory of Computing, pages 141-148, 1999.

Luca Trevisan, Salil P. Vadhan, and David Zuckerman. Compression of samplable
sources. Technical Report TR05-012, Electronic Colloquium on Computational Com­
plexity (ECCC), 2005.

Hoeteck Wee. On pseudoentropy versus compressibility. In IEEE Conference on Com­
putational Complexity, pages 29-41. IEEE Computer Society, 2004.

Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In 23rd Annual
Symposium on Foundations of Computer Science, pages 80-91, Chicago, Illinois, 3-5
November 1982. IEEE.

http://www.ietf.org/rfc/rfcl321.txt
http://www.cs.berkeley.edu/~luca/pacc/lecture08.pdf

www.manaraa.com

63

Curriculum Vitae

Chun-Yuan Hsiao
Department of Computer Science
Boston University
111 Cummington Street
Boston, MA 02215

Research Interests
Cryptography, Security, Theoretical Computer Science. Some specific areas:

• Protocol/Primitive Design

• Computational Entropy, Pseudorandomness

• Hash Functions

Education
• Ph.D. (2002 - 2010), Department of Computer Science, Boston University

Adviser: Prof. Leonid Reyzin

• M.S. (1999 - 2001), Department of Computer Science and Information Engineering,
National Taiwan University
Advisers: Dr. Chi-Jen Lu. and Prof. Yuh-Dauh Lyuu

• B.S. (1995 - 1999), Department of Computer Science and Information Engineering,
National Taiwan University

Employment History
• Fall 2006, Fellow, Institute for Pure and Applied Mathematics (IPAM) at UCLA.

(Workshop on Securing Cyberspace: Application and Foundations of Cryptography
and Computer Security)

• Fall 2006, 2005, 2004, Spring. 2004, Summer 2003, Research Assistant, Department
of Computer Science at Boston University. Supervisor: Prof. Leonid Reyzin

• Summer 2006, 2005, 2004, Spring 2002, Research Assistant, Academia Sinica,
Taiwan. Supervisor: Dr. Chi-Jen Lu

Publications
• Conditional Computational Entropy, or Toward Separating

Pseudoentropy from Compressibility, with Chi-Jen Lu and Leonid Reyzin.
Advances in Cryptology - EUROCRYPT 2007, Moni Naor, editor, Lecture Notes in
Computer Science 4515 Springer-Verlag, pages 169-186, 2007.

Office: PSY 224
Phone: 617-358-2356
Email: cyhsiao@bu.edu

mailto:cyhsiao@bu.edu

www.manaraa.com

64

• The Impossibility of Basing One-Way Permutations on Central
Cryptographic Primitives, with Yan-Cheng Chang and Chi-Jen Lu. Journal of
Cryptology 19(1): pages 97-114, 2006.

• Finding Collisions on a Public Road, or Do Secure Hash Functions Need
Secret Coins? with Leonid Reyzin. Advances in Cryptology - CRYPTO 2004,
Matt Franklin, editor, Lecture Notes in Computer Science 3152, Springer-Verlag,
pages 92-105, 2004.

• On the Impossibilities of Basing One-Way Permutations on Central
Cryptographic Primitives, with Yan-Cheng Chang and Chi-Jen Lu. Advances in
Cryptology - ASIACRYPT 2002, Yuliang Zheng, editor, Lecture Notes in Computer
Science 2501, Springer-Verlag, pages 110-124, 2002.

Talks and Presentations
• Conditional Computational Entropy, or Toward Separating

Pseudoentropy from Compressibility

- June 2007, Cryptography Group Seminar at Brown University
- May 2007, The 26th Annual Eurocrypt Conference (EUROCRYPT 2007)
- December 2006, Workshop on Securing Cyberspace: Applications and

Foundations of Cryptography and Computer Security, held by Institute for
Pure and Applied Mathematics at UCLA

• Finding Collisions on a Public Road, or Do Secure Hash Functions Need
Secret Coins?

- July 2005, Seminar at Taiwan Information Security Center
- April 2005, Cryptography and Information Security Group Seminar at MIT
- August 2004, The 24rd Annual International Cryptology Conference (CRYPTO

2004)

• Private Information Retrieval does not Imply One-Way Permutations

- 2003, Applied Cryptography and Electronic Security Group Seminar at Boston
University

Honors and Awards
• 2002 - 2006, Boston University Presidential Scholarship

• 1996, National Taiwan University Dean's List

• 1997, 4th place in National Collegiate Programming Contest, Taiwan

• 1996, 12th place in National Collegiate Programming Contest, Taiwan

Teaching Experience

Teaching Fellow at the Department of Computer Science at Boston University

• Spring&Fall 2007, Spring&Fall 2008: CS101, Introduction to Computers
(undergraduate)

• Spring 2006, CS530, Advanced Algorithms (graduate)

• Spring 2005, CS330, Analysis of Algorithms (undergraduate)

• Fall 2003, CS535, Complexity (graduate)

www.manaraa.com

65

References

Prof. Leonid Reyzin
Department of Computer Science
Boston University
111 Cummington Street, Boston, MA 02215, USA
reyzin@cs.bu.edu

Dr. Chi-Jen Lu
Institute of Information Science
Academia Sinica
Nankang 115 Taipei, Taiwan
cjluOiis.sinica.edu.tw

Dr. Gene Itkis
Lincoln Laboratory
Massachusetts Institute of Technology
244 Wood Street, Lexington, MA 02420-9108, USA
itkis@ll.mit.edu

mailto:reyzin@cs.bu.edu
mailto:itkis@ll.mit.edu

